Suppr超能文献

一种改良的 Rubisco 筛选方法鉴定了一个能够增强 CO2 固定动力学的蛋白-蛋白界面。

An improved screen for Rubisco identifies a protein-protein interface that can enhance CO-fixation kinetics.

机构信息

Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia.

Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia.

出版信息

J Biol Chem. 2018 Jan 5;293(1):18-27. doi: 10.1074/jbc.M117.810861. Epub 2017 Oct 6.

Abstract

An overarching goal of photosynthesis research is to identify how components of the process can be improved to benefit crop productivity, global food security, and renewable energy storage. Improving carbon fixation has mostly focused on enhancing the CO fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). This grand challenge has mostly proved ineffective because of catalytic mechanism constraints and required chaperone complementarity that hinder Rubisco biogenesis in alternative hosts. Here we refashion metabolism by expressing a phosphoribulokinase-neomycin phosphotransferase fusion protein to produce a high-fidelity, high-throughput Rubisco-directed evolution (RDE2) screen that negates false-positive selection. Successive evolution rounds using the plant-like -Rubisco from the cyanobacterium BP1 identified two large subunit and six small subunit mutations that improved carboxylation rate, efficiency, and specificity. Structural analysis revealed the amino acids clustered in an unexplored subunit interface of the holoenzyme. To study its effect on plant growth, the -Rubisco was transformed into tobacco by chloroplast transformation. As previously seen for PCC6301 Rubisco, the specialized folding and assembly requirements of -Rubisco hinder its heterologous expression in leaf chloroplasts. Our findings suggest that the ongoing efforts to improve crop photosynthesis by integrating components of a cyanobacteria CO-concentrating mechanism will necessitate co-introduction of the ancillary molecular components required for Rubisco biogenesis.

摘要

光合作用研究的一个总体目标是确定如何改进该过程的各个组成部分,以提高作物生产力、全球粮食安全和可再生能源储存。提高碳固定主要集中在增强 CO 固定酶核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)上。由于催化机制的限制和必需的伴侣蛋白互补性,这一重大挑战在替代宿主中阻碍了 Rubisco 的生物发生,因此证明大多是无效的。在这里,我们通过表达磷酸核酮糖激酶-新霉素磷酸转移酶融合蛋白来重塑代谢,产生高保真、高通量的 Rubisco 定向进化(RDE2)筛选,从而消除假阳性选择。在使用来自蓝藻 BP1 的植物样 -Rubisco 进行连续进化轮次后,鉴定出两个大亚基和六个小亚基突变,提高了羧化速率、效率和特异性。结构分析揭示了这些氨基酸在全酶的一个未探索的亚基界面上聚集。为了研究其对植物生长的影响,通过叶绿体转化将 -Rubisco 转化为烟草。与 PCC6301 Rubisco 之前的研究结果一样,-Rubisco 特殊的折叠和组装要求阻碍了其在叶片叶绿体中的异源表达。我们的研究结果表明,通过整合蓝藻 CO 浓缩机制的组件来提高作物光合作用的持续努力将需要共同引入 Rubisco 生物发生所需的辅助分子组件。

相似文献

8
Towards engineering carboxysomes into C3 plants.致力于将羧酶体工程化引入C3植物。
Plant J. 2016 Jul;87(1):38-50. doi: 10.1111/tpj.13139. Epub 2016 Jun 20.

引用本文的文献

6
A map of the rubisco biochemical landscape.核酮糖-1,5-二磷酸羧化酶/加氧酶生化景观图。
Nature. 2025 Feb;638(8051):823-828. doi: 10.1038/s41586-024-08455-0. Epub 2025 Jan 22.
10
Engineering Rubisco to enhance CO utilization.改造核酮糖-1,5-二磷酸羧化酶以提高二氧化碳的利用效率
Synth Syst Biotechnol. 2023 Dec 27;9(1):55-68. doi: 10.1016/j.synbio.2023.12.006. eCollection 2024 Mar.

本文引用的文献

1
Progress and prospects in plant genome editing.植物基因组编辑的进展与展望。
Nat Plants. 2017 Jul 31;3:17107. doi: 10.1038/nplants.2017.107.
3
Biogenesis and Metabolic Maintenance of Rubisco.Rubisco 的生物发生和代谢维持。
Annu Rev Plant Biol. 2017 Apr 28;68:29-60. doi: 10.1146/annurev-arplant-043015-111633. Epub 2017 Jan 11.
6
Sugar Synthesis from CO2 in Escherichia coli.大肠杆菌中由二氧化碳合成糖
Cell. 2016 Jun 30;166(1):115-25. doi: 10.1016/j.cell.2016.05.064. Epub 2016 Jun 23.
8
Towards engineering carboxysomes into C3 plants.致力于将羧酶体工程化引入C3植物。
Plant J. 2016 Jul;87(1):38-50. doi: 10.1111/tpj.13139. Epub 2016 Jun 20.
10
The mechanism of Rubisco-catalysed oxygenation.核酮糖-1,5-二磷酸羧化酶催化加氧的机制。
Plant Cell Environ. 2016 May;39(5):983-97. doi: 10.1111/pce.12629. Epub 2015 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验