Suppr超能文献

使用分子力学模拟硫属元素键:模拟依布硒啉的拟原子方法。

Simulating chalcogen bonding using molecular mechanics: a pseudoatom approach to model ebselen.

机构信息

Bio21 Institute and School of Chemistry, University of Melbourne, Parkville, Australia.

出版信息

J Mol Model. 2022 Feb 24;28(3):66. doi: 10.1007/s00894-021-05023-5.

Abstract

The organoselenium compound ebselen has recently been investigated as a treatment for COVID-19; however, efforts to model ebselen in silico have been hampered by the lack of an efficient and accurate method to assess its binding to biological macromolecules. We present here a Generalized Amber Force Field modification which incorporates classical parameters for the selenium atom in ebselen, as well as a positively charged pseudoatom to simulate the σ-hole, a quantum mechanical phenomenon that dominates the chemistry of ebselen. Our approach is justified using an energy decomposition analysis of a number of density functional theory-optimized structures, which shows that the σ-hole interaction is primarily electrostatic in origin. Finally, our model is verified by conducting molecular dynamics simulations on a number of simple complexes, as well as the clinically relevant enzyme SOD1 (superoxide dismutase), which is known to bind to ebselen. Graphical Abstract Ebselen is an organoselenium drug that has shown promise for the treatment of a number of conditions. Computational modelling of drug-target complexes is commonly performed to determine the likely mechanism of action, however this is difficult in the case of ebselen, as an important mode of interaction is not simulated using current techniques. We present here an extension to common methods, which accurately captures this interaction.

摘要

有机硒化合物 ebselen 最近被研究用于治疗 COVID-19;然而,由于缺乏有效和准确的方法来评估其与生物大分子的结合,因此在计算机中对 ebselen 进行建模的努力受到了阻碍。我们在这里提出了一种广义的 Amber 力场修饰,其中包含了 ebselen 中硒原子的经典参数,以及一个正电荷的拟原子来模拟σ-hole,这是一种主导 ebselen 化学的量子力学现象。我们的方法通过对许多密度泛函理论优化结构的能量分解分析得到了验证,结果表明σ-hole 相互作用主要是静电起源的。最后,我们通过对一些简单的复合物以及临床上相关的酶 SOD1(超氧化物歧化酶)进行分子动力学模拟来验证我们的模型,SOD1 已知与 ebselen 结合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验