School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4001, Australia.
Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland 4001, Australia.
Anal Chem. 2022 Mar 8;94(9):3897-3903. doi: 10.1021/acs.analchem.1c04915. Epub 2022 Feb 24.
Gas-phase ion-molecule reactions provide structural insights across a range of analytical applications. A hindrance to the wider use of ion-molecule reactions is that they are relatively slow compared to other ion activation modalities and can thereby impose a bottleneck on the time required to analyze each sample. Here we describe a method for accelerating the rate of ion-molecule reactions involving ozone, implemented by supplementary RF-activation of mass-selected ions within a linear ion trap. Reaction rate accelerations between 15-fold (for ozonolysis of alkenes in ionised lipids) and 90-fold (for ozonation of halide anions) are observed compared to thermal conditions. These enhanced reaction rates with ozone increase sample throughput, aligning the reaction time with the overall duty cycle of the mass spectrometer. We demonstrate that the acceleration is due to the supplementary RF-activation surmounting the activation barrier energy of the entrance channel of the ion-molecule reaction. This rate acceleration is subsequently shown to aid identification of new, low abundance lipid isomers and enables an equivalent increase in the number of lipid species that can be analyzed.
气相离子-分子反应为各种分析应用提供了结构见解。离子-分子反应的广泛应用受到限制,因为与其他离子活化模式相比,它们相对较慢,从而可能对分析每个样品所需的时间造成瓶颈。在这里,我们描述了一种用于加速涉及臭氧的离子-分子反应的方法,该方法通过在线性离子阱中对质量选择的离子进行补充射频(RF)活化来实现。与热条件相比,观察到臭氧的离子-分子反应速率加速了 15 倍(对于离子化脂质中的烯烃的臭氧化)和 90 倍(对于卤化物阴离子的臭氧化)。这些增强的臭氧反应速率提高了样品通量,使反应时间与质谱仪的整体工作周期保持一致。我们证明,这种加速是由于补充的 RF 活化克服了离子-分子反应入口通道的活化势垒能量。随后表明,这种速率加速有助于识别新的、低丰度脂质异构体,并能够分析更多的脂质种类。