Le Guen Vincent, Thome Nicolas
IEEE Trans Pattern Anal Mach Intell. 2023 Jan;45(1):342-355. doi: 10.1109/TPAMI.2022.3152862. Epub 2022 Dec 5.
This paper addresses the problem of multi-step time series forecasting for non-stationary signals that can present sudden changes. Current state-of-the-art deep learning forecasting methods, often trained with variants of the MSE, lack the ability to provide sharp predictions in deterministic and probabilistic contexts. To handle these challenges, we propose to incorporate shape and temporal criteria in the training objective of deep models. We define shape and temporal similarities and dissimilarities, based on a smooth relaxation of Dynamic Time Warping (DTW) and Temporal Distortion Index (TDI), that enable to build differentiable loss functions and positive semi-definite (PSD) kernels. With these tools, we introduce DILATE (DIstortion Loss including shApe and TimE), a new objective for deterministic forecasting, that explicitly incorporates two terms supporting precise shape and temporal change detection. For probabilistic forecasting, we introduce STRIPE++ (Shape and Time diverRsIty in Probabilistic for Ecasting), a framework for providing a set of sharp and diverse forecasts, where the structured shape and time diversity is enforced with a determinantal point process (DPP) diversity loss. Extensive experiments and ablations studies on synthetic and real-world datasets confirm the benefits of leveraging shape and time features in time series forecasting.
本文探讨了针对可能出现突然变化的非平稳信号的多步时间序列预测问题。当前最先进的深度学习预测方法,通常使用均方误差(MSE)的变体进行训练,在确定性和概率性环境中缺乏提供精确预测的能力。为应对这些挑战,我们建议在深度模型的训练目标中纳入形状和时间标准。我们基于动态时间规整(DTW)和时间失真指数(TDI)的平滑松弛定义形状和时间的相似性与差异性,这使得能够构建可微损失函数和半正定(PSD)核。借助这些工具,我们引入了DILATE(包括形状和时间的失真损失),这是一种用于确定性预测的新目标,它明确纳入了支持精确形状和时间变化检测的两个项。对于概率性预测,我们引入了STRIPE++(概率预测中的形状和时间多样性),这是一个用于提供一组精确且多样预测的框架,其中结构化的形状和时间多样性通过行列式点过程(DPP)多样性损失来强化。在合成数据集和真实世界数据集上进行的广泛实验和消融研究证实了在时间序列预测中利用形状和时间特征的好处。