Arante Hero Rafael Castillo, Sybingco Edwin, Roque Maria Antonette, Ambata Leonard, Chua Alvin, Gutierrez Alvin Neil
Department of Electronics and Computer Engineering, De La Salle University, 2401 Taft Avenue, Malate, Manila 1004, Philippines.
Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, Malate, Manila 1004, Philippines.
Sensors (Basel). 2025 Jun 22;25(13):3885. doi: 10.3390/s25133885.
The paper aims to provide a flood prediction system in the Philippines to increase flood awareness, which may help reduce property damage and save lives. Real-time flood status can significantly increase community awareness and preparedness. A flood model will simulate the flood level with secured data flow from the sensor to the cloud. The algorithms embedded in the flood predicting model include fuzzy logic, LSTM neural network, and genetic algorithm. The project used the Infineon security module (Infineon Technologies Philippines Inc., Metro Manila, Philippines) to create a secure connection from the setup to the AWS. All data transmitted were encrypted when being sent to AWS IoT Core, Timestream, and Grafana. After training and testing, the neuro-fuzzy LSTM network with genetic algorithm solution showed improved flood prediction accuracy of 92.91% compared to the ADAM solver that predicts every 2 h using an 0.02 initial learning rate, 1000 LSTM hidden layers, and 1000 epochs. The best solution predicts a flood every 3 h using an ADAM solver, a 0.01 initial learning rate, and 244 LSTM hidden layers for 158 epochs.
本文旨在为菲律宾提供一个洪水预测系统,以提高人们对洪水的认识,这可能有助于减少财产损失并拯救生命。实时洪水状况可显著提高社区的认识和防范能力。洪水模型将通过从传感器到云端的安全数据流来模拟洪水水位。洪水预测模型中嵌入的算法包括模糊逻辑、长短期记忆(LSTM)神经网络和遗传算法。该项目使用英飞凌安全模块(菲律宾英飞凌科技公司,菲律宾马尼拉大都会)创建从设备到亚马逊云服务(AWS)的安全连接。所有传输的数据在发送到AWS物联网核心、时间序列数据库(Timestream)和格拉菲纳(Grafana)时都进行了加密。经过训练和测试,与使用0.02初始学习率、1000个LSTM隐藏层和1000个轮次每2小时进行一次预测的ADAM求解器相比,采用遗传算法解决方案的神经模糊LSTM网络的洪水预测准确率提高到了92.91%。最佳解决方案是使用ADAM求解器、0.01初始学习率、244个LSTM隐藏层,在158个轮次下每3小时预测一次洪水。