IEEE J Biomed Health Inform. 2022 Jul;26(7):3435-3446. doi: 10.1109/JBHI.2022.3153902. Epub 2022 Jul 1.
Self-supervised learning (SSL) can alleviate the issue of small sample size, which has shown its effectiveness for the computer-aided diagnosis (CAD) models. However, since the conventional SSL methods share the identical backbone in both the pretext and downstream tasks, the pretext network generally cannot be well trained in the pre-training stage, if the pretext task is totally different from the downstream one. In this work, we propose a novel task-driven SSL method, namely Self-Supervised Bi-channel Transformer Networks (SSBTN), to improve the diagnostic accuracy of a CAD model by enhancing SSL flexibility. In SSBTN, we innovatively integrate two different networks for the pretext and downstream tasks, respectively, into a unified framework. Consequently, the pretext task can be flexibly designed based on the data characteristics, and the corresponding designed pretext network thus learns more effective feature representation to be transferred to the downstream network. Furthermore, a transformer-based transfer module is developed to efficiently enhance knowledge transfer by conducting feature alignment between two different networks. The proposed SSBTN is evaluated on two publicly available datasets, namely the full-field digital mammography INbreast dataset and the wireless video capsule CrohnIPI dataset. The experimental results indicate that the proposed SSBTN outperforms all the compared algorithms.
自监督学习(SSL)可以缓解小样本量的问题,在计算机辅助诊断(CAD)模型中已经显示出其有效性。然而,由于传统的 SSL 方法在预训练任务和下游任务中共享相同的骨干网络,如果预训练任务与下游任务完全不同,那么预训练网络通常无法在预训练阶段得到很好的训练。在这项工作中,我们提出了一种新颖的任务驱动自监督学习方法,即自监督双通道 Transformer 网络(SSBTN),通过提高 SSL 的灵活性来提高 CAD 模型的诊断准确性。在 SSBTN 中,我们创新性地将两个不同的网络分别用于预训练任务和下游任务,将它们集成到一个统一的框架中。因此,可以根据数据特点灵活地设计预训练任务,相应设计的预训练网络从而可以学习更有效的特征表示,并将其转移到下游网络。此外,还开发了一个基于 Transformer 的迁移模块,通过在两个不同的网络之间进行特征对齐,有效地增强知识迁移。在两个公开可用的数据集,即全视野数字乳腺 X 线摄影 INbreast 数据集和无线视频胶囊 CrohnIPI 数据集上对所提出的 SSBTN 进行了评估。实验结果表明,所提出的 SSBTN 优于所有比较算法。