Suppr超能文献

急性感染期间外周血细胞计数对区分新冠病毒感染和登革热的作用

The Usefulness of Peripheral Blood Cell Counts to Distinguish COVID-19 from Dengue during Acute Infection.

作者信息

Osuna-Ramos Juan Fidel, Reyes-Ruiz José Manuel, Ochoa-Ramírez Luis Antonio, De Jesús-González Luis Adrián, Ramos-Payán Rosalío, Farfan-Morales Carlos Noe, Romero-Utrilla Alejandra, Ríos-Burgueño Efrén Rafael, Rodríguez-Millán José, Del Ángel Rosa María, Velarde-Félix Jesús Salvador

机构信息

Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de México 07360, Mexico.

Escuela de Medicina, Universidad Autónoma de Durango Campus Culiacán, Culiacán Rosales 80050, Mexico.

出版信息

Trop Med Infect Dis. 2022 Jan 30;7(2):20. doi: 10.3390/tropicalmed7020020.

Abstract

COVID-19 and dengue disease are challenging to tell apart because they have similarities in clinical and laboratory features during the acute phase of infection, leading to misdiagnosis and delayed treatment. The present study evaluated peripheral blood cell count accuracy to distinguish COVID-19 non-critical patients from non-severe dengue cases between the second and eleventh day after symptom onset. A total of 288 patients infected with SARS-CoV-2 (n = 105) or dengue virus (n = 183) were included in this study. Neutrophil, platelet, and lymphocyte counts were used to calculate the neutrophil-lymphocyte ratio (NLR), the platelet-lymphocyte ratio (PLR), and the neutrophil-lymphocyte*platelet ratio (NLPR). The logistic regression and ROC curves analysis revealed that neutrophil and platelet counts, NLR, LPR, and NLPR were higher in COVID-19 than dengue. The multivariate predictive model showed that the neutrophils, platelets, and NLPR were independently associated with COVID-19 with a good fit predictive value ( = 0.1041). The neutrophil (AUC = 0.95, 95% CI = 0.84-0.91), platelet (AUC = 0.89, 95% CI = 0.85-0.93) counts, and NLR (AUC = 0.88, 95% CI = 0.84-0.91) were able to discriminate COVID-19 from dengue with high sensitivity and specificity values (above 80%). Finally, based on predicted probabilities on combining neutrophils and platelets with NLR or NLPR, the adjusted AUC was 0.97 (95% CI = 0.94-0.98) to differentiate COVID-19 from dengue during the acute phase of infection with outstanding accuracy. These findings might suggest that the neutrophil, platelet counts, and NLR or NLPR provide a quick and cost-effective way to distinguish between dengue and COVID-19 in the context of co-epidemics in low-income tropical regions.

摘要

新冠病毒病(COVID-19)和登革热在感染急性期的临床和实验室特征存在相似之处,因此很难区分,这可能导致误诊和治疗延误。本研究评估了症状出现后第二天至第十一天外周血细胞计数在区分非重症COVID-19患者和非重症登革热病例方面的准确性。本研究共纳入了288例感染严重急性呼吸综合征冠状病毒2(SARS-CoV-2)(n = 105)或登革热病毒(n = 183)的患者。使用中性粒细胞、血小板和淋巴细胞计数来计算中性粒细胞与淋巴细胞比值(NLR)、血小板与淋巴细胞比值(PLR)以及中性粒细胞-淋巴细胞-血小板比值(NLPR)。逻辑回归和ROC曲线分析显示,COVID-19患者的中性粒细胞和血小板计数、NLR、LPR和NLPR高于登革热患者。多变量预测模型显示,中性粒细胞、血小板和NLPR与COVID-19独立相关,具有良好的拟合预测价值(= 0.1041)。中性粒细胞计数(AUC = 0.95,95%CI = 0.84 - 0.91)、血小板计数(AUC = 0.89,95%CI = 0.85 - 0.93)和NLR(AUC = 0.88,95%CI = 0.84 - 0.91)能够以高灵敏度和特异性值(高于80%)区分COVID-19和登革热。最后,基于中性粒细胞和血小板与NLR或NLPR相结合的预测概率,调整后的AUC为0.97(95%CI = 0.94 - 0.98),在感染急性期区分COVID-19和登革热时具有出色的准确性。这些发现可能表明,在低收入热带地区的共流行背景下,中性粒细胞、血小板计数以及NLR或NLPR为区分登革热和COVID-19提供了一种快速且经济高效的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a08e/8879929/07de3427bf2c/tropicalmed-07-00020-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验