脆性 X 综合征导致的错义突变会破坏 FMRP 颗粒的形成、动态和功能。
FXS causing missense mutations disrupt FMRP granule formation, dynamics, and function.
机构信息
Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America.
Molecular and Cellular Biophysics Program, University of Denver, Denver, Colorado, United States of America.
出版信息
PLoS Genet. 2022 Feb 24;18(2):e1010084. doi: 10.1371/journal.pgen.1010084. eCollection 2022 Feb.
Fragile X Syndrome (FXS) is the most prevalent cause of inherited mental deficiency and is the most common monogenetic cause of autism spectral disorder (ASD). Here, we demonstrate that disease-causing missense mutations in the conserved K homology (KH) RNA binding domains (RBDs) of FMRP cause defects in its ability to form RNA transport granules in neurons. Using molecular, genetic, and imaging approaches in the Drosophila FXS model system, we show that the KH1 and KH2 domains of FMRP regulate distinct aspects of neuronal FMRP granule formation, dynamics, and transport. Furthermore, mutations in the KH domains disrupt translational repression in cells and the localization of known FMRP target mRNAs in neurons. These results suggest that the KH domains play an essential role in neuronal FMRP granule formation and function which may be linked to the molecular pathogenesis of FXS.
脆性 X 综合征 (FXS) 是最常见的遗传性智力缺陷的原因,也是自闭症谱系障碍 (ASD) 最常见的单基因原因。在这里,我们证明 FMRP 中保守的 K 同源 (KH) RNA 结合域 (RBD) 的致病错义突变导致其在神经元中形成 RNA 运输颗粒的能力缺陷。使用果蝇 FXS 模型系统中的分子、遗传和成像方法,我们表明 FMRP 的 KH1 和 KH2 结构域调节神经元 FMRP 颗粒形成、动态和运输的不同方面。此外,KH 结构域中的突变会破坏细胞中的翻译抑制作用以及已知 FMRP 靶 mRNA 在神经元中的定位。这些结果表明 KH 结构域在神经元 FMRP 颗粒形成和功能中发挥着重要作用,这可能与 FXS 的分子发病机制有关。
相似文献
Biochim Biophys Acta Proteins Proteom. 2024-7-1
J Mol Biol. 2020-4-25
Proc Natl Acad Sci U S A. 2015-1-27
Nat Rev Neurosci. 2021-4
引用本文的文献
Nat Cell Biol. 2024-12
Genes Dev. 2023-5-1
Front Mol Biosci. 2022-12-16
Front Cell Dev Biol. 2022-7-6
本文引用的文献
Nat Rev Neurosci. 2021-4
Curr Protoc Cell Biol. 2020-6
J Mol Biol. 2020-4-25
Curr Protoc Bioinformatics. 2020-6