Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.
Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
Science. 2019 Aug 23;365(6455):825-829. doi: 10.1126/science.aax4240.
Membraneless organelles involved in RNA processing are biomolecular condensates assembled by phase separation. Despite the important role of intrinsically disordered protein regions (IDRs), the specific interactions underlying IDR phase separation and its functional consequences remain elusive. To address these questions, we used minimal condensates formed from the C-terminal disordered regions of two interacting translational regulators, FMRP and CAPRIN1. Nuclear magnetic resonance spectroscopy of FMRP-CAPRIN1 condensates revealed interactions involving arginine-rich and aromatic-rich regions. We found that different FMRP serine/threonine and CAPRIN1 tyrosine phosphorylation patterns control phase separation propensity with RNA, including subcompartmentalization, and tune deadenylation and translation rates in vitro. The resulting evidence for residue-specific interactions underlying co-phase separation, phosphorylation-modulated condensate architecture, and enzymatic activity within condensates has implications for how the integration of signaling pathways controls RNA processing and translation.
无膜细胞器参与 RNA 加工,是通过相分离组装而成的生物分子凝聚体。尽管无序蛋白区域(IDR)起着重要作用,但 IDR 相分离的特定相互作用及其功能后果仍难以捉摸。为了解决这些问题,我们使用了由两个相互作用的翻译调节剂 FMRP 和 CAPRIN1 的 C 端无序区域形成的最小凝聚体。FMRP-CAPRIN1 凝聚体的核磁共振波谱显示涉及富含精氨酸和富含芳香族的区域的相互作用。我们发现,不同的 FMRP 丝氨酸/苏氨酸和 CAPRIN1 酪氨酸磷酸化模式控制着与 RNA 的相分离倾向,包括亚区室化,并调节体外脱腺苷酸化和翻译速率。这些证据表明,在共相分离、磷酸化调节凝聚体结构以及凝聚体内酶活性方面,残基特异性相互作用对于信号通路的整合如何控制 RNA 加工和翻译具有重要意义。