生物材料组学:数据科学驱动的第四代生物材料开发途径

Biomaterialomics: Data science-driven pathways to develop fourth-generation biomaterials.

作者信息

Basu Bikramjit, Gowtham N H, Xiao Yang, Kalidindi Surya R, Leong Kam W

机构信息

Materials Research Center, Indian Institute of Science, Bangalore, India; Translational Center of Excellence on Biomaterials for Orthopedic and Dental applications, Indian Institute of Science, Bangalore 560012, India.

Materials Research Center, Indian Institute of Science, Bangalore, India.

出版信息

Acta Biomater. 2022 Apr 15;143:1-25. doi: 10.1016/j.actbio.2022.02.027. Epub 2022 Feb 23.

Abstract

Conventional approaches to developing biomaterials and implants require intuitive tailoring of manufacturing protocols and biocompatibility assessment. This leads to longer development cycles, and high costs. To meet existing and unmet clinical needs, it is critical to accelerate the production of implantable biomaterials, implants and biomedical devices. Building on the Materials Genome Initiative, we define the concept 'biomaterialomics' as the integration of multi-omics data and high-dimensional analysis with artificial intelligence (AI) tools throughout the entire pipeline of biomaterials development. The Data Science-driven approach is envisioned to bring together on a single platform, the computational tools, databases, experimental methods, machine learning, and advanced manufacturing (e.g., 3D printing) to develop the fourth-generation biomaterials and implants, whose clinical performance will be predicted using 'digital twins'. While analysing the key elements of the concept of 'biomaterialomics', significant emphasis has been put forward to effectively utilize high-throughput biocompatibility data together with multiscale physics-based models, E-platform/online databases of clinical studies, data science approaches, including metadata management, AI/ Machine Learning (ML) algorithms and uncertainty predictions. Such integrated formulation will allow one to adopt cross-disciplinary approaches to establish processing-structure-property (PSP) linkages. A few published studies from the lead author's research group serve as representative examples to illustrate the formulation and relevance of the 'Biomaterialomics' approaches for three emerging research themes, i.e. patient-specific implants, additive manufacturing, and bioelectronic medicine. The increased adaptability of AI/ML tools in biomaterials science along with the training of the next generation researchers in data science are strongly recommended. STATEMENT OF SIGNIFICANCE: This leading opinion review paper emphasizes the need to integrate the concepts and algorithms of the data science with biomaterials science. Also, this paper emphasizes the need to establish a mathematically rigorous cross-disciplinary framework that will allow a systematic quantitative exploration and curation of critical biomaterials knowledge needed to drive objectively the innovation efforts within a suitable uncertainty quantification framework, as embodied in 'biomaterialomics' concept, which integrates multi-omics data and high-dimensional analysis with artificial intelligence (AI) tools, like machine learning. The formulation of this approach has been demonstrated for patient-specific implants, additive manufacturing, and bioelectronic medicine.

摘要

开发生物材料和植入物的传统方法需要直观地调整制造方案并进行生物相容性评估。这导致开发周期延长和成本高昂。为满足现有和未满足的临床需求,加速可植入生物材料、植入物和生物医学设备的生产至关重要。基于材料基因组计划,我们将“生物材料组学”的概念定义为在生物材料开发的整个流程中,将多组学数据和高维分析与人工智能(AI)工具相结合。这种由数据科学驱动的方法旨在将计算工具、数据库、实验方法、机器学习和先进制造(如3D打印)整合在一个单一平台上,以开发第四代生物材料和植入物,其临床性能将通过“数字孪生”进行预测。在分析“生物材料组学”概念的关键要素时,重点强调了要有效利用高通量生物相容性数据以及基于多尺度物理的模型、临床研究的电子平台/在线数据库、数据科学方法,包括元数据管理、人工智能/机器学习(ML)算法和不确定性预测。这种综合的方法将使人们能够采用跨学科方法来建立加工-结构-性能(PSP)联系。第一作者研究小组发表的一些研究作为代表性例子,说明了“生物材料组学”方法对于三个新兴研究主题,即个性化植入物、增材制造和生物电子医学的制定和相关性。强烈建议提高人工智能/机器学习工具在生物材料科学中的适应性,并对下一代研究人员进行数据科学培训。

重要性声明

这篇前沿观点综述文章强调了将数据科学的概念和算法与生物材料科学相结合的必要性。此外,本文强调需要建立一个数学严谨的跨学科框架,该框架将允许在合适的不确定性量化框架内,系统地定量探索和整理推动创新努力所需的关键生物材料知识,这体现在“生物材料组学”概念中,该概念将多组学数据和高维分析与人工智能(AI)工具(如机器学习)相结合。这种方法的制定已在个性化植入物、增材制造和生物电子医学中得到证明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索