Suppr超能文献

阿尔茨海默病影像遗传学 GWAS 中频繁项集挖掘的研究。

Research on Frequent Itemset Mining of Imaging Genetics GWAS in Alzheimer's Disease.

机构信息

College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China.

School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China.

出版信息

Genes (Basel). 2022 Jan 19;13(2):176. doi: 10.3390/genes13020176.

Abstract

As an efficient method, genome-wide association study (GWAS) is used to identify the association between genetic variation and pathological phenotypes, and many significant genetic variations founded by GWAS are closely associated with human diseases. However, it is not enough to mine only a single marker effect variation on complex biological phenotypes. Mining highly correlated single nucleotide polymorphisms (SNP) is more meaningful for the study of Alzheimer's disease (AD). In this paper, we used two frequent pattern mining (FPM) framework, the FP-Growth and Eclat algorithms, to analyze the GWAS results of functional magnetic resonance imaging (fMRI) phenotypes. Moreover, we applied the definition of confidence to FP-Growth and Eclat to enhance the FPM framework. By calculating the conditional probability of identified SNPs, we obtained the corresponding association rules to provide support confidence between these important SNPs. The resulting SNPs showed close correlation with hippocampus, memory, and AD. The experimental results also demonstrate that our framework is effective in identifying SNPs and provide candidate SNPs for further research.

摘要

作为一种有效的方法,全基因组关联研究(GWAS)被用于识别遗传变异与病理表型之间的关联,许多由 GWAS 发现的显著遗传变异与人类疾病密切相关。然而,仅仅挖掘单一标记效应变异对于复杂生物表型的研究是不够的。挖掘高度相关的单核苷酸多态性(SNP)对于阿尔茨海默病(AD)的研究更有意义。在本文中,我们使用了两种频繁模式挖掘(FPM)框架,FP-Growth 和 Eclat 算法,来分析功能磁共振成像(fMRI)表型的 GWAS 结果。此外,我们应用置信度的定义来增强 FP-Growth 和 Eclat 的 FPM 框架。通过计算已识别 SNP 的条件概率,我们获得了相应的关联规则,为这些重要 SNP 之间提供了支持置信度。结果 SNP 与海马体、记忆和 AD 密切相关。实验结果还表明,我们的框架在识别 SNP 方面是有效的,并为进一步的研究提供了候选 SNP。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b2/8871801/e80ffa49b787/genes-13-00176-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验