Suppr超能文献

用于预测阿片类物质使用障碍康复项目早期退出风险的机器学习

Machine Learning for Predicting Risk of Early Dropout in a Recovery Program for Opioid Use Disorder.

作者信息

Gottlieb Assaf, Yatsco Andrea, Bakos-Block Christine, Langabeer James R, Champagne-Langabeer Tiffany

机构信息

School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St., Houston, TX 77030, USA.

McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA.

出版信息

Healthcare (Basel). 2022 Jan 25;10(2):223. doi: 10.3390/healthcare10020223.

Abstract

BACKGROUND

An increase in opioid use has led to an opioid crisis during the last decade, leading to declarations of a public health emergency. In response to this call, the Houston Emergency Opioid Engagement System (HEROES) was established and created an emergency access pathway into long-term recovery for individuals with an opioid use disorder. A major contributor to the success of the program is retention of the enrolled individuals in the program.

METHODS

We have identified an increase in dropout from the program after 90 and 120 days. Based on more than 700 program participants, we developed a machine learning approach to predict the individualized risk for dropping out of the program.

RESULTS

Our model achieved sensitivity of 0.81 and specificity of 0.65 for dropout at 90 days and improved the performance to sensitivity of 0.86 and specificity of 0.66 for 120 days. Additionally, we identified individual risk factors for dropout, including previous overdose and relapse and improvement in reported quality of life.

CONCLUSIONS

Our informatics approach provides insight into an area where programs may allocate additional resources in order to retain high-risk individuals and increase the chances of success in recovery.

摘要

背景

在过去十年中,阿片类药物使用的增加导致了阿片类药物危机,引发了公共卫生紧急状态的声明。为响应这一呼吁,休斯顿紧急阿片类药物参与系统(HEROES)得以建立,并为患有阿片类药物使用障碍的个人创建了一条通往长期康复的紧急接入途径。该项目成功的一个主要因素是已登记人员在项目中的留存率。

方法

我们发现项目在90天和120天后的退出率有所上升。基于700多名项目参与者,我们开发了一种机器学习方法来预测个体退出项目的风险。

结果

我们的模型在90天时对退出的预测灵敏度为0.81,特异性为0.65,到120天时性能有所提升,灵敏度为0.86,特异性为0.66。此外,我们还确定了退出的个体风险因素,包括既往过量用药、复发以及报告的生活质量改善情况。

结论

我们的信息学方法为项目可能分配额外资源以留住高风险个体并增加康复成功几率的领域提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c3b/8871589/c2d3610999c8/healthcare-10-00223-g001.jpg

相似文献

1
Machine Learning for Predicting Risk of Early Dropout in a Recovery Program for Opioid Use Disorder.
Healthcare (Basel). 2022 Jan 25;10(2):223. doi: 10.3390/healthcare10020223.
2
Analyzing Dropout in Alcohol Recovery Programs: A Machine Learning Approach.
J Clin Med. 2024 Aug 15;13(16):4825. doi: 10.3390/jcm13164825.
6
Feasibility and outcomes from an integrated bridge treatment program for opioid use disorder.
J Am Coll Emerg Physicians Open. 2021 Mar 31;2(2):e12417. doi: 10.1002/emp2.12417. eCollection 2021 Apr.
7
A Framework for EMS Outreach for Drug Overdose Survivors: A Case Report of the Houston Emergency Opioid Engagement System.
Prehosp Emerg Care. 2021 May-Jun;25(3):441-448. doi: 10.1080/10903127.2020.1755755. Epub 2020 May 4.
9
Predicting Success of a Digital Self-Help Intervention for Alcohol and Substance Use With Machine Learning.
Front Psychol. 2021 Sep 3;12:734633. doi: 10.3389/fpsyg.2021.734633. eCollection 2021.

本文引用的文献

4
Big data and predictive modelling for the opioid crisis: existing research and future potential.
Lancet Digit Health. 2021 Jun;3(6):e397-e407. doi: 10.1016/S2589-7500(21)00058-3.
5
Feasibility and outcomes from an integrated bridge treatment program for opioid use disorder.
J Am Coll Emerg Physicians Open. 2021 Mar 31;2(2):e12417. doi: 10.1002/emp2.12417. eCollection 2021 Apr.
6
Retention of patients in opioid substitution treatment: A systematic review.
PLoS One. 2020 May 14;15(5):e0232086. doi: 10.1371/journal.pone.0232086. eCollection 2020.
7
Opioid agonist treatment and fatal overdose risk in a state-wide US population receiving opioid use disorder services.
Addiction. 2020 Sep;115(9):1683-1694. doi: 10.1111/add.14991. Epub 2020 Feb 24.
8
Treatment resistant opioid use disorder (TROUD): Definition, rationale, and recommendations.
J Neurol Sci. 2020 Apr 15;411:116718. doi: 10.1016/j.jns.2020.116718. Epub 2020 Feb 5.
9
Routes of non-traditional entry into buprenorphine treatment programs.
Subst Abuse Treat Prev Policy. 2020 Jan 20;15(1):6. doi: 10.1186/s13011-020-0252-z.
10
Opioid use disorder.
Nat Rev Dis Primers. 2020 Jan 9;6(1):3. doi: 10.1038/s41572-019-0137-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验