Collin Adele, Ayuso-Muñoz Adrián, Tejera-Nevado Paloma, Prieto-Santamaría Lucía, Verdejo-García Antonio, Díaz-Batanero Carmen, Fernández-Calderón Fermín, Albein-Urios Natalia, Lozano Óscar M, Rodríguez-González Alejandro
CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France.
Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain.
J Clin Med. 2024 Aug 15;13(16):4825. doi: 10.3390/jcm13164825.
: Retention in treatment is crucial for the success of interventions targeting alcohol use disorder (AUD), which affects over 100 million people globally. Most previous studies have used classical statistical techniques to predict treatment dropout, and their results remain inconclusive. This study aimed to use novel machine learning tools to identify models that predict dropout with greater precision, enabling the development of better retention strategies for those at higher risk. : A retrospective observational study of 39,030 (17.3% female) participants enrolled in outpatient-based treatment for alcohol use disorder in a state-wide public treatment network has been used. Participants were recruited between 1 January 2015 and 31 December 2019. We applied different machine learning algorithms to create models that allow one to predict the premature cessation of treatment (dropout). With the objective of increasing the explainability of those models with the best precision, considered as black-box models, explainability technique analyses were also applied. : Considering as the best models those obtained with one of the so-called black-box models (support vector classifier (SVC)), the results from the best model, from the explainability perspective, showed that the variables that showed greater explanatory capacity for treatment dropout are previous drug use as well as psychiatric comorbidity. Among these variables, those of having undergone previous opioid substitution treatment and receiving coordinated psychiatric care in mental health services showed the greatest capacity for predicting dropout. : By using novel machine learning techniques on a large representative sample of patients enrolled in alcohol use disorder treatment, we have identified several machine learning models that help in predicting a higher risk of treatment dropout. Previous treatment for other substance use disorders (SUDs) and concurrent psychiatric comorbidity were the best predictors of dropout, and patients showing these characteristics may need more intensive or complementary interventions to benefit from treatment.
对于针对酒精使用障碍(AUD)的干预措施而言,治疗留存率对于其成功至关重要,全球有超过1亿人受酒精使用障碍影响。此前大多数研究都使用经典统计技术来预测治疗退出情况,但其结果尚无定论。本研究旨在使用新颖的机器学习工具来识别能更精确预测退出情况的模型,从而为高风险人群制定更好的留存策略。:我们对一个全州范围的公共治疗网络中39,030名(17.3%为女性)参加酒精使用障碍门诊治疗的参与者进行了一项回顾性观察研究。参与者于2015年1月1日至2019年12月31日期间招募。我们应用了不同的机器学习算法来创建能够预测治疗过早终止(退出)的模型。为了提高那些被视为黑箱模型的、具有最佳精度的模型的可解释性,还应用了解释性技术分析。:将通过所谓的黑箱模型之一(支持向量分类器(SVC))获得的模型视为最佳模型,从可解释性角度来看,最佳模型的结果表明,对治疗退出具有更大解释能力的变量是既往药物使用以及精神疾病共病。在这些变量中,既往接受过阿片类药物替代治疗以及在心理健康服务中接受过协调精神科护理的变量显示出最大的预测退出能力。:通过对参加酒精使用障碍治疗的大量代表性患者样本使用新颖的机器学习技术,我们识别出了几种有助于预测更高治疗退出风险的机器学习模型。既往有其他物质使用障碍(SUD)治疗史以及并发精神疾病共病是退出的最佳预测因素,表现出这些特征的患者可能需要更强化或补充性的干预措施才能从治疗中获益。