Suppr超能文献

在一项基于大学的健康保险计划中,评估一种手动方法与一种基于概率的自动化算法以识别药物基因组学不良药物结局高风险患者的情况。

Assessment of a Manual Method versus an Automated, Probability-Based Algorithm to Identify Patients at High Risk for Pharmacogenomic Adverse Drug Outcomes in a University-Based Health Insurance Program.

作者信息

Grande Kendra J, Dalton Rachel, Moyer Nicolas A, Arwood Meghan J, Nguyen Khoa A, Sumfest Jill, Ashcraft Kristine C, Cooper-DeHoff Rhonda M

机构信息

Invitae, Denver, CO 80134, USA.

Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA.

出版信息

J Pers Med. 2022 Jan 26;12(2):161. doi: 10.3390/jpm12020161.

Abstract

We compared patient cohorts selected for pharmacogenomic testing using a manual method or automated algorithm in a university-based health insurance network. The medication list was compiled from claims data during 4th quarter 2018. The manual method selected patients by number of medications by the health system's list of medications for pharmacogenomic testing. The automated method used YouScript's pharmacogenetic interaction probability (PIP) algorithm to select patients based on the probability that testing would result in detection of one or more clinically significant pharmacogenetic interactions. A total of 6916 patients were included. Patient cohorts selected by each method differed substantially, including size (manual = 218, automated = 286) and overlap ( = 41). The automated method was over twice as likely to identify patients where testing may reveal a clinically significant pharmacogenetic interaction than the manual method (62% vs. 29%, < 0.0001). The manual method captured more patients with significant drug-drug or multi-drug interactions (80.3% vs. 40.2%, respectively, < 0.0001), higher average number of significant drug interactions per patient (3.3 vs. 1.1, < 0.0001), and higher average number of unique medications per patient (9.8 vs. 7.4, < 0.0001). It is possible to identify a cohort of patients who would likely benefit from pharmacogenomic testing using manual or automated methods.

摘要

我们在一个基于大学的健康保险网络中,比较了使用手动方法或自动算法选择进行药物基因组学检测的患者队列。用药清单是根据2018年第四季度的理赔数据编制的。手动方法根据卫生系统用于药物基因组学检测的药物清单,按用药数量选择患者。自动方法使用YouScript的药物遗传学相互作用概率(PIP)算法,根据检测是否会发现一种或多种具有临床意义的药物遗传学相互作用的概率来选择患者。总共纳入了6916名患者。通过每种方法选择的患者队列有很大差异,包括规模(手动 = 218,自动 = 286)和重叠部分( = 41)。与手动方法相比,自动方法识别出检测可能揭示具有临床意义的药物遗传学相互作用的患者的可能性高出两倍多(62%对29%,< 0.0001)。手动方法捕获了更多有显著药物 - 药物或多药物相互作用的患者(分别为80.3%对40.2%,< 0.0001),每位患者的显著药物相互作用平均数量更高(3.3对1.1,< 0.0001),以及每位患者的独特药物平均数量更高(9.8对7.4,< 0.0001)。使用手动或自动方法都有可能识别出可能从药物基因组学检测中受益的患者队列。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2ea/8878761/9bb818878ba2/jpm-12-00161-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验