Suppr超能文献

采用液相和气相色谱-质谱联用技术对陈酿香醋的酚类成分进行比较。

Comparison of Phenolic Profile of Balsamic Vinegars Determined Using Liquid and Gas Chromatography Coupled with Mass Spectrometry.

机构信息

Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, Czech Republic.

出版信息

Molecules. 2022 Feb 17;27(4):1356. doi: 10.3390/molecules27041356.

Abstract

Balsamic vinegar is one of the best known and most popular types of vinegar, and it is a rich source of polyphenolic compounds. The quality of balsamic vinegar as well as the content of phenolic substances vary depending on the production method. In the present work, we have developed a method for comprehensive characterization of the content of phenolic compounds in balsamic vinegars based on the combination of gas chromatography (GC) and high-performance liquid chromatography (HPLC) coupled with mass spectrometric detection in single mode (MS) and tandem mode (MS/MS). In total, 14 samples of different types of balsamic vinegar were analyzed without difficulty in sample preparation. The separation conditions and detection parameters of HPLC-MS/MS were optimized and used for the determination of 29 phenolic compounds and 6 phenolic acids. The profile of phenolic compounds was completed by semi-quantitative analysis of volatile organic compounds using GC-MS after optimized headspace solid-phase microextraction. Gallic acid, protocatechuic acid, caffeic acid, and -coumaric acid have been identified as the major phenolic compounds in balsamic vinegars.

摘要

香脂醋是最知名和最受欢迎的醋之一,也是多酚化合物的丰富来源。香脂醋的质量和酚类物质的含量取决于生产方法。在本工作中,我们开发了一种基于气相色谱(GC)和高效液相色谱(HPLC)结合质谱单模式(MS)和串联模式(MS/MS)检测的方法,用于综合表征香脂醋中酚类化合物的含量。总共分析了 14 种不同类型的香脂醋,在样品制备方面没有遇到困难。优化了 HPLC-MS/MS 的分离条件和检测参数,用于测定 29 种酚类化合物和 6 种酚酸。通过优化顶空固相微萃取后使用 GC-MS 对挥发性有机化合物进行半定量分析,完成了酚类化合物的分析。鉴定出香脂醋中的主要酚类化合物为没食子酸、原儿茶酸、咖啡酸和 -香豆酸。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86e3/8874619/14052c8948c3/molecules-27-01356-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验