Opt Express. 2022 Jan 17;30(2):1723-1736. doi: 10.1364/OE.442321.
We present an automated method for COVID-19 screening based on reconstructed phase profiles of red blood cells (RBCs) and a highly comparative time-series analysis (HCTSA). Video digital holographic data -was obtained using a compact, field-portable shearing microscope to capture the temporal fluctuations and spatio-temporal dynamics of live RBCs. After numerical reconstruction of the digital holographic data, the optical volume is calculated at each timeframe of the reconstructed data to produce a time-series signal for each cell in our dataset. Over 6000 features are extracted on the time-varying optical volume sequences using the HCTSA to quantify the spatio-temporal behavior of the RBCs, then a linear support vector machine is used for classification of individual RBCs. Human subjects are then classified for COVID-19 based on the consensus of their cells' classifications. The proposed method is tested on a dataset of 1472 RBCs from 24 human subjects (10 COVID-19 positive, 14 healthy) collected at UConn Health Center. Following a cross-validation procedure, our system achieves 82.13% accuracy, with 92.72% sensitivity, and 73.21% specificity (area under the receiver operating characteristic curve: 0.8357). Furthermore, the proposed system resulted in 21 out of 24 human subjects correctly labeled. To the best of our knowledge this is the first report of a highly comparative time-series analysis using digital holographic microscopy data.
我们提出了一种基于重构的红细胞(RBC)相分布和高度对比时间序列分析(HCTSA)的 COVID-19 自动筛查方法。使用紧凑型、现场便携的剪切显微镜获取视频数字全息数据,以捕获活 RBC 的时间波动和时空动力学。对数字全息数据进行数值重建后,在重建数据的每个时间帧上计算光学体积,以生成数据集内每个细胞的时间序列信号。使用 HCTSA 从时变光学体积序列中提取超过 6000 个特征,以量化 RBC 的时空行为,然后使用线性支持向量机对单个 RBC 进行分类。然后根据其细胞分类的共识对人类受试者进行 COVID-19 分类。该方法在康涅狄格大学健康中心采集的 24 名人类受试者(10 名 COVID-19 阳性,14 名健康)的 1472 个 RBC 数据集上进行了测试。经过交叉验证程序,我们的系统实现了 82.13%的准确率,92.72%的灵敏度和 73.21%的特异性(接收器操作特性曲线下面积:0.8357)。此外,该系统正确标记了 24 名人类受试者中的 21 名。据我们所知,这是首次使用数字全息显微镜数据进行高度对比时间序列分析的报告。