Atzori Marco, Köpp Wiebke, Chien Steven W D, Massaro Daniele, Mallor Fermín, Peplinski Adam, Rezaei Mohamad, Jansson Niclas, Markidis Stefano, Vinuesa Ricardo, Laure Erwin, Schlatter Philipp, Weinkauf Tino
SimEx/FLOW, Engineering Mechanics, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
Division of Computational Science and Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
J Supercomput. 2022;78(3):3605-3620. doi: 10.1007/s11227-021-03990-3. Epub 2021 Aug 2.
In situ visualization on high-performance computing systems allows us to analyze simulation results that would otherwise be impossible, given the size of the simulation data sets and offline post-processing execution time. We develop an in situ adaptor for Paraview Catalyst and Nek5000, a massively parallel Fortran and C code for computational fluid dynamics. We perform a strong scalability test up to 2048 cores on KTH's Beskow Cray XC40 supercomputer and assess in situ visualization's impact on the Nek5000 performance. In our study case, a high-fidelity simulation of turbulent flow, we observe that in situ operations significantly limit the strong scalability of the code, reducing the relative parallel efficiency to only on 2048 cores (the relative efficiency of Nek5000 without in situ operations is ). Through profiling with Arm MAP, we identified a bottleneck in the image composition step (that uses the Radix-kr algorithm) where a majority of the time is spent on MPI communication. We also identified an imbalance of in situ processing time between rank 0 and all other ranks. In our case, better scaling and load-balancing in the parallel image composition would considerably improve the performance of Nek5000 with in situ capabilities. In general, the result of this study highlights the technical challenges posed by the integration of high-performance simulation codes and data-analysis libraries and their practical use in complex cases, even when efficient algorithms already exist for a certain application scenario.
在高性能计算系统上进行原位可视化,使我们能够分析模拟结果,而鉴于模拟数据集的大小和离线后处理执行时间,否则这些结果将无法分析。我们为ParaView Catalyst和Nek5000开发了一个原位适配器,Nek5000是一个用于计算流体动力学的大规模并行Fortran和C代码。我们在瑞典皇家理工学院的Beskow Cray XC40超级计算机上进行了高达2048个核心的强可扩展性测试,并评估了原位可视化对Nek5000性能的影响。在我们的研究案例中,即对湍流进行高保真模拟时,我们观察到原位操作显著限制了代码的强可扩展性,将相对并行效率降低到在2048个核心上仅为 (没有原位操作时Nek5000的相对效率为 )。通过使用Arm MAP进行性能分析,我们在图像合成步骤(使用Radix-kr算法)中发现了一个瓶颈,其中大部分时间花在了MPI通信上。我们还发现了0号进程和所有其他进程之间原位处理时间的不平衡。在我们的案例中,并行图像合成中更好的可扩展性和负载平衡将显著提高具有原位功能的Nek5000的性能。总体而言,这项研究的结果凸显了高性能模拟代码与数据分析库集成所带来的技术挑战,以及它们在复杂情况下的实际应用,即使在某个应用场景中已经存在高效算法。