Central Diagnostic Laboratory, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands.
Laboratory for Childhood Cancer Pathology, Prinses Máxima Center, Utrecht, The Netherlands.
Biochem Med (Zagreb). 2022 Feb 15;32(1):010904. doi: 10.11613/BM.2022.010904.
Leukolysis-related pseudohyperkalemia due to preanalytical procedures may lead to erroneous (or absence of) treatment based on an invalid lab test result. We aimed to obtain a leukocyte threshold above which leukolysis-related pseudohyperkalemia becomes clinical relevant. Secondly, temporal dynamics of treatment-induced leukocyte decrease were studied to allow tailored implementation of laboratory information system (LIS) decision rules based on the leukocyte threshold to avoid leukolysis-related pseudohyperkalemia.
Potassium results of AU5811 routine chemistry (Beckman Coulter, Brea, California, USA) and iStat point of care (POC) (Abbott Diagnostics, Chicago, Illinois, USA) analysers were compared, the latter method being insensitive to leukolysis caused by pre-analytical procedures. Potassium results were combined with leukocyte counts obtained using a Cell-Dyn Sapphire haematology analyser (Abbott Diagnostics, Santa Clara, California, USA), resulting in 132 unique data triplets. Regression analysis was performed to establish a leukocyte threshold. The Reference Change Value (√2 x Z x √(CV + CV )) was used to calculate maximum allowable difference between routine analyser and POC potassium results (delta + 0.58 mmol/L). Temporal analysis on the treatment-induced leukocyte decrease was performed by plotting leukocyte counts in time for all patients above the threshold leukocyte count (N = 41).
Established leukocyte threshold was 63 x10/L. Temporal analysis showed leukocyte counts below the threshold within 8 days of treatment for all patients.
Based on performed analyses we were able to implement LIS decision rules to reduce pseudohyperkalemia due to preanalytical procedures. This implementation can contribute to a reduction in erroneous (or absence of) treatments in the clinic.
由于分析前程序导致的白细胞溶解相关假性高钾血症可能导致基于无效实验室检测结果的错误(或缺乏)治疗。我们旨在确定一个白细胞阈值,超过该阈值,白细胞溶解相关假性高钾血症将具有临床相关性。其次,研究治疗诱导的白细胞减少的时间动态,以便根据白细胞阈值定制实施实验室信息系统(LIS)决策规则,以避免白细胞溶解相关假性高钾血症。
比较 AU5811 常规化学(贝克曼库尔特,布雷亚,加利福尼亚,美国)和 iStat 即时检验(POC)(雅培诊断,芝加哥,伊利诺伊,美国)分析仪的钾结果,后者方法对分析前程序引起的白细胞溶解不敏感。将钾结果与使用 Cell-Dyn Sapphire 血液学分析仪(雅培诊断,圣克拉拉,加利福尼亚,美国)获得的白细胞计数相结合,得到 132 个独特的数据三联体。进行回归分析以确定白细胞阈值。使用参考变化值(√2 x Z x √(CV + CV ))计算常规分析仪和 POC 钾结果之间允许的最大差异(delta + 0.58 mmol/L)。通过绘制所有超过阈值白细胞计数的患者的时间白细胞计数来进行治疗诱导的白细胞减少的时间分析(N = 41)。
确定的白细胞阈值为 63 x10/L。时间分析显示,所有患者在治疗后 8 天内白细胞计数低于阈值。
基于进行的分析,我们能够实施 LIS 决策规则以减少分析前程序导致的假性高钾血症。这种实施可以有助于减少临床中的错误(或缺乏)治疗。