Yan Yingzhang, Yu Yonghao, Zhang Yumin, Yao Tai, Xu Ping, Song Bo
School of Physics, Harbin Institute of Technology, Harbin 150001, China.
HIT Center for Analysis, Measurement and Computing, Harbin Institute of Technology, Harbin 150001, China.
Chem Commun (Camb). 2022 Mar 15;58(22):3645-3648. doi: 10.1039/d2cc00343k.
Electrochemical conversion of carbon dioxide and carbon monoxide into value-added multi-carbon products (C) offers a promising approach for artificial oxycarbide recycling. However, C productivity is still limited by gas accessibility inside the catalyst layer. Here, a Cu-PMMA porous hybrid architecture with rich triple-phase boundaries was demonstrated to enhance both gas diffusion and electron transfer, and then, facilitate the kinetics of CO electrolysis. As a result, a high C faradaic efficiency (FE) of 81.6% at a current density of 50 mA cm and a maximum C partial current density of 140 mA cm were achieved, among the best performances for Cu/hybrid catalysts. This study provides a novel strategy for designing electrochemical CO reduction (ECORR) catalysts and paves the way for further developing gas-involving electrocatalysis.
将二氧化碳和一氧化碳电化学转化为高附加值的多碳产物(C)为人工氧碳化物循环提供了一种很有前景的方法。然而,C的生产率仍然受到催化剂层内部气体可达性的限制。在此,具有丰富三相边界的Cu-PMMA多孔混合结构被证明可增强气体扩散和电子转移,进而促进CO电解动力学。结果,在50 mA cm的电流密度下实现了81.6%的高C法拉第效率(FE)以及140 mA cm的最大C分电流密度,这在Cu/混合催化剂中是最佳性能之一。本研究为设计电化学CO还原(ECORR)催化剂提供了一种新策略,并为进一步发展涉及气体的电催化铺平了道路。