Li Hefei, Wei Pengfei, Liu Tianfu, Li Mingrun, Wang Chao, Li Rongtan, Ye Jinyu, Zhou Zhi-You, Sun Shi-Gang, Fu Qiang, Gao Dunfeng, Wang Guoxiong, Bao Xinhe
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
Nat Commun. 2024 May 30;15(1):4603. doi: 10.1038/s41467-024-49095-2.
Producing valuable chemicals like ethylene via catalytic carbon monoxide conversion is an important nonpetroleum route. Here we demonstrate an electrochemical route for highly efficient synthesis of multicarbon (C) chemicals from CO. We achieve a C partial current density as high as 4.35 ± 0.07 A cm at a low cell voltage of 2.78 ± 0.01 V over a grain boundary-rich Cu nanoparticle catalyst in an alkaline membrane electrode assembly (MEA) electrolyzer, with a C Faradaic efficiency of 87 ± 1% and a CO conversion of 85 ± 3%. Operando Raman spectroscopy and density functional theory calculations reveal that the grain boundaries of Cu nanoparticles facilitate CO adsorption and C - C coupling, thus rationalizing a qualitative trend between C production and grain boundary density. A scale-up demonstration using an electrolyzer stack with five 100 cm MEAs achieves high C and ethylene formation rates of 118.9 mmol min and 1.2 L min, respectively, at a total current of 400 A (4 A cm) with a C Faradaic efficiency of 64%.
通过催化一氧化碳转化生产乙烯等有价值的化学品是一条重要的非石油路线。在此,我们展示了一种从一氧化碳高效合成多碳(C)化学品的电化学路线。在碱性膜电极组件(MEA)电解槽中,通过富含晶界的铜纳米颗粒催化剂,在2.78±0.01 V的低电池电压下,我们实现了高达4.35±0.07 A cm的C分电流密度,C法拉第效率为87±1%,CO转化率为85±3%。原位拉曼光谱和密度泛函理论计算表明,铜纳米颗粒的晶界促进了CO吸附和C-C偶联,从而解释了C生成与晶界密度之间的定性趋势。使用具有五个100 cm MEA的电解槽堆栈进行的放大演示,在400 A(4 A cm)的总电流下,分别实现了118.9 mmol min和1.2 L min的高C和乙烯生成速率,C法拉第效率为64%。