Suppr超能文献

基于银纳米粒子修饰的藏红花 capped 碳糊电极的电化学传感器的研制及其对甲卡西酮的监测

Development of an Electrochemical Sensor Using a Modified Carbon Paste Electrode with Silver Nanoparticles Capped with Saffron for Monitoring Mephedrone.

机构信息

Analytical Chemistry Laboratory, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.

出版信息

Sensors (Basel). 2022 Feb 18;22(4):1625. doi: 10.3390/s22041625.

Abstract

Mephedrone, also known as 4-methylmethcathinone, is growing into a prominent recreational drug for young people. When it came to detecting mephedrone, limited efforts were made using electrochemical sensors. As a result, this application depicts the fabrication of a new, sensitive, selective, and economical electrochemical sensor capable of detecting mephedrone by using silver nanoparticles capped with saffron produced through electropolymerization to modify carbon paste electrodes (CPEs). Silver nanoparticles (AgNPs) were capped with saffron (AgNPs@Sa) using a green method. AgNPs@Sa were studied using electron scanning microscopy (SEM) and UV-vis spectroscopy. The sensor was evaluated under the optimum condition to determine its analytical features. The results showed that this procedure had a wide linear range, low detection limit and sufficient reproducibility. Furthermore, the sensor posed sufficient stability. Moreover, it was applied in the determination of mephedrone in urine samples, showing the potential applicability of this electrochemical sensor in real sample analysis.

摘要

甲卡西酮,也被称为 4-甲基甲卡西酮,正在成为年轻人中一种突出的消遣性药物。在检测甲卡西酮方面,电化学传感器的应用研究有限。因此,本应用描绘了一种新的、灵敏的、选择性的和经济的电化学传感器的制作,该传感器能够通过使用电聚合生成的藏红花包裹的银纳米粒子来修饰碳糊电极(CPE)来检测甲卡西酮。使用绿色方法将银纳米粒子(AgNPs)用藏红花进行了包裹(AgNPs@Sa)。使用电子扫描显微镜(SEM)和紫外可见光谱对 AgNPs@Sa 进行了研究。在最佳条件下对传感器进行了评估,以确定其分析特性。结果表明,该方法具有较宽的线性范围、较低的检测限和足够的重现性。此外,该传感器具有足够的稳定性。此外,它还被应用于尿液样品中甲卡西酮的测定,显示了这种电化学传感器在实际样品分析中的潜在适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/381f/8878875/0906b186ab1c/sensors-22-01625-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验