Suppr超能文献

经微流控直接将患者成纤维细胞转化为神经元后,对神经退行性疾病的病理标志物进行检测。

Detection of Pathological Markers of Neurodegenerative Diseases following Microfluidic Direct Conversion of Patient Fibroblasts into Neurons.

机构信息

Department of Neuroscience, Istituto Superiore di Sanita', 00161 Rome, Italy.

Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy.

出版信息

Int J Mol Sci. 2022 Feb 15;23(4):2147. doi: 10.3390/ijms23042147.

Abstract

Neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease are clinically diagnosed using neuropsychological and cognitive tests, expensive neuroimaging-based approaches (MRI and PET) and invasive and time-consuming lumbar puncture for cerebrospinal fluid (CSF) sample collection to detect biomarkers. Thus, a rapid, simple and cost-effective approach to more easily access fluids and tissues is in great need. Here, we exploit the chemical direct reprogramming of patient skin fibroblasts into neurons (chemically induced neurons, ciNs) as a novel strategy for the rapid detection of different pathological markers of neurodegenerative diseases. We found that FAD fibroblasts have a reduced efficiency of reprogramming, and converted ciNs show a less complex neuronal network. In addition, ciNs from patients show misfolded protein accumulation and mitochondria ultrastructural abnormalities, biomarkers commonly associated with neurodegeneration. Moreover, for the first time, we show that microfluidic technology, in combination with chemical reprogramming, enables on-chip examination of disease pathological processes and may have important applications in diagnosis. In conclusion, ciNs on microfluidic devices represent a small-scale, non-invasive and cost-effective high-throughput tool for protein misfolding disease diagnosis and may be useful for new biomarker discovery, disease mechanism studies and design of personalised therapies.

摘要

神经退行性疾病,如阿尔茨海默病和帕金森病,临床上可通过神经心理学和认知测试、昂贵的基于神经影像学的方法(MRI 和 PET)以及侵入性和耗时的腰椎穿刺采集脑脊液(CSF)样本进行诊断,以检测生物标志物。因此,迫切需要一种快速、简单且经济高效的方法来更方便地获取体液和组织。在这里,我们利用患者皮肤成纤维细胞向神经元的化学直接重编程(化学诱导神经元,ciN)作为一种快速检测神经退行性疾病不同病理标志物的新策略。我们发现 FAD 成纤维细胞的重编程效率降低,并且转化的 ciN 显示出较少的复杂神经网络。此外,来自患者的 ciN 显示出错误折叠蛋白的积累和线粒体超微结构异常,这些是与神经退行性变相关的常见生物标志物。此外,我们首次展示了微流控技术与化学重编程相结合,可以在芯片上检查疾病的病理过程,并且可能在诊断中具有重要应用。总之,微流控设备上的 ciN 代表了一种用于蛋白质错误折叠疾病诊断的小规模、非侵入性和经济高效的高通量工具,可能有助于发现新的生物标志物、研究疾病机制和设计个性化治疗方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9675/8879457/0b7a7c81100d/ijms-23-02147-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验