Suppr超能文献

应用组织系统病理学检测预测 Barrett 食管进展:国际多中心研究的汇总分析。

Prediction of Progression in Barrett's Esophagus Using a Tissue Systems Pathology Test: A Pooled Analysis of International Multicenter Studies.

机构信息

Barrett's Esophagus Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.

Barrett's Esophagus Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.

出版信息

Clin Gastroenterol Hepatol. 2022 Dec;20(12):2772-2779.e8. doi: 10.1016/j.cgh.2022.02.033. Epub 2022 Feb 22.

Abstract

BACKGROUND & AIMS: Prediction of progression risk in Barrett's esophagus (BE) may enable personalized management. We aimed to assess the adjunct value of a tissue systems pathology test (TissueCypher) performed on paraffin-embedded biopsy tissue, when added to expert pathology review in predicting incident progression, pooling individual patient-level data from multiple international studies METHODS: Demographics, clinical features, the TissueCypher risk class/score, and progression status were analyzed. Conditional logistical regression analysis was used to develop multivariable models predicting incident progression with and without the TissueCypher risk class (low, intermediate, high). Concordance (c-) statistics were calculated and compared with likelihood ratio tests to assess predictive ability of models. A risk prediction calculator integrating clinical variables and TissueCypher risk class was also developed.

RESULTS

Data from 552 patients with baseline no (n = 472), indefinite (n = 32), or low-grade dysplasia (n = 48) (comprising 152 incident progressors and 400 non-progressors) were analyzed. A high-risk test class independently predicted increased risk of progression to high-grade dysplasia/adenocarcinoma (odds ratio, 6.0; 95% confidence interval, 2.9-12.0), along with expert confirmed low-grade dysplasia (odds ratio, 2.9; 95% confidence interval, 1.2-7.2). Model prediction of progression with the TissueCypher risk class incorporated was significantly superior than without, in the whole cohort (c-statistic 0.75 vs 0.68; P < .0001) and the nondysplastic BE subset (c-statistic 0.72 vs 0.63; P < .0001). Sensitivity and specificity of the high risk TissueCypher class were 38% and 94%, respectively.

CONCLUSIONS

An objective tissue systems pathology test high-risk class is a strong independent predictor of incident progression in patients with BE, substantially improving progression risk prediction over clinical variables alone. Although test specificity was high, sensitivity was modest.

摘要

背景与目的

预测巴雷特食管(BE)的进展风险可能有助于实现个体化管理。我们旨在评估组织系统病理学测试(TissueCypher)在预测偶发进展方面的附加价值,该测试通过对石蜡包埋活检组织进行检测,同时结合多位专家的病理审查,汇总来自多个国际研究的个体患者水平数据。

方法

分析患者的人口统计学、临床特征、TissueCypher 风险类别/评分以及进展情况。使用条件逻辑回归分析,建立包含和不包含 TissueCypher 风险类别的多变量模型(低危、中危、高危),以预测偶发进展。计算一致性(c-)统计量,并通过似然比检验比较模型的预测能力。还开发了一个整合临床变量和 TissueCypher 风险类别的风险预测计算器。

结果

共分析了 552 名患者的基线无(n=472)、不确定(n=32)或低级别上皮内瘤变(n=48)(包括 152 名偶发进展者和 400 名非进展者)的数据。高危检测类别独立预测向高级别上皮内瘤变/腺癌进展的风险增加(比值比,6.0;95%置信区间,2.9-12.0),并结合专家确认的低级别上皮内瘤变(比值比,2.9;95%置信区间,1.2-7.2)。在整个队列(c 统计量 0.75 比 0.68;P<0.0001)和非异型性 BE 亚组(c 统计量 0.72 比 0.63;P<0.0001)中,与不包含 TissueCypher 风险类别的模型相比,纳入 TissueCypher 风险类别的模型对进展的预测明显更优。高危 TissueCypher 类别的敏感性和特异性分别为 38%和 94%。

结论

组织系统病理学检测的客观高危类别是 BE 患者偶发进展的一个强有力的独立预测因子,与仅基于临床变量相比,大大提高了进展风险预测能力。尽管检测的特异性较高,但敏感性适中。

相似文献

4
Surveillance in Barrett's esophagus: an audit of practice.巴雷特食管的监测:实践审计。
Dig Dis Sci. 2010 Jun;55(6):1615-21. doi: 10.1007/s10620-009-0917-y. Epub 2009 Aug 11.
8
A Tissue Systems Pathology Assay for High-Risk Barrett's Esophagus.一种用于高危巴雷特食管的组织系统病理学检测方法。
Cancer Epidemiol Biomarkers Prev. 2016 Jun;25(6):958-68. doi: 10.1158/1055-9965.EPI-15-1164. Epub 2016 May 13.

引用本文的文献

5
Advances in Screening for Barrett Esophagus and Esophageal Adenocarcinoma.巴雷特食管和食管腺癌筛查的进展。
Mayo Clin Proc. 2024 Mar;99(3):459-473. doi: 10.1016/j.mayocp.2023.07.014. Epub 2024 Jan 25.
8
Surveillance in Barrett's Esophagus: Challenges, Progress, and Possibilities.巴雷特食管的监测:挑战、进展与可能。
Gastroenterology. 2023 Apr;164(5):707-718. doi: 10.1053/j.gastro.2023.01.031. Epub 2023 Feb 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验