Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogota, D.C, Colombia.
Product and Process Design Group (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia.
N Biotechnol. 2022 Jul 25;69:18-27. doi: 10.1016/j.nbt.2022.02.005. Epub 2022 Feb 22.
Fructo-oligosaccharides (FOS) are one of the most well-studied and commercialized prebiotics. FOS can be obtained either by controlled hydrolysis of inulin or by sucrose transfructosylation. FOS produced from sucrose are typically classified as short-chain FOS (scFOS), of which the best known are 1-kestotriose (GF), 1,1-kestotetraose (GF), and 1,1,1-kestopentaose (GF), produced by fructosyltransferases (FTases) or β-fructofuranosidases. In previous work, FOS production was studied using the Aspergillus oryzae N74 strain, its ftase gene was heterologously expressed in Komagataella phaffii (Pichia pastoris), and the enzyme's tertiary structure modeled. More recently, residues that may be involved in protein-substrate interactions were predicted. In this study, the aim was to experimentally validate previous in silico results by independently producing recombinant wild-type A. oryzae N74 FTase and three single-point mutations in Komagataella phaffii (Pichia pastoris). The R163A mutation virtually abolished the transfructosylating activity, indicating a requirement for the positively charged arginine residue in the catalytic domain D. In contrast, transfructosylating activity was improved by introducing the mutations V242E or F254H, with V242E resulting in higher production of GF without affecting that of GF. Interestingly, initial sucrose concentration, reaction temperature and the presence of metal cofactors did not affect the enhanced activity of mutant V242E. Overall, these results shed light on the mechanism of transfructosylation of the FTase from A. oryzae and expand considerations regarding the design of biotechnological processes for specific FOS production.
低聚果糖(FOS)是研究最广泛、商业化程度最高的益生元之一。FOS 可以通过菊粉的控制水解或蔗糖转果糖基化获得。由蔗糖产生的 FOS 通常被归类为短链 FOS(scFOS),其中最著名的是 1-蔗果三糖(GF)、1,1-蔗果四糖(GF)和 1,1,1-蔗果五糖(GF),由果糖基转移酶(FTases)或β-呋喃果糖苷酶产生。在以前的工作中,使用米曲霉 N74 菌株研究了 FOS 的生产,其 ftase 基因在毕赤酵母(Komagataella phaffii)中异源表达,并对该酶的三级结构进行了建模。最近,预测了可能参与蛋白质-底物相互作用的残基。在这项研究中,目的是通过在毕赤酵母(Komagataella phaffii)中独立生产重组野生型 A.oryzae N74 FTase 和三个单点突变来实验验证以前的计算机模拟结果。R163A 突变几乎完全消除了转果糖基化活性,表明催化结构域 D 中带正电荷的精氨酸残基是必需的。相比之下,引入 V242E 或 F254H 突变提高了转果糖基化活性,其中 V242E 导致 GF 的产量增加,而不影响 GF 的产量。有趣的是,初始蔗糖浓度、反应温度和金属辅因子的存在并不影响突变体 V242E 的增强活性。总的来说,这些结果阐明了来自米曲霉的 FTase 的转果糖基化机制,并扩展了关于特定 FOS 生产的生物技术过程设计的考虑。