Institute of Science and Technology, Federal University of Alfenas (UNIFAL-MG), José Aurélio Vilela Road 11999, Km 533, Poços de Caldas, MG, Zip Code 37715-400, Brazil.
Department of Bioprocess Engineering and Biotechnology, Federal University of Tocantins (UFT), Badejos Street 69-72, Jardim Cervilha, Gurupi, TO, Zip Code 77404-970, Brazil.
Biotechnol Lett. 2021 Jan;43(1):43-59. doi: 10.1007/s10529-020-03016-7. Epub 2020 Oct 7.
Extracellular fructosyltransferase (FTase, E.C.2.4.1.9) from Aspergillus oryzae IPT-301 was immobilized on silica gel by adsorption and biochemically characterized aiming at its application in the transfructosylation reaction of sucrose for the production of fructooligossaccarides (FOS).
The transfructosylation activity (A) was maximized by the experimental design in function of the reaction pHs and temperatures. The A of the immobilized enzyme showed the kinetics behavior described by the Hill model. The immobilized FTase showed reuse capacity for six consecutive reaction cycles and higher pH and thermal stability than the soluble enzyme.
These results suggest a high potential of application of silica gel as support for FTase immobilization aiming at FOS production.
从米曲霉 IPT-301 中提取细胞外果糖基转移酶(FTase,E.C.2.4.1.9),通过吸附将其固定在硅胶上,并对其进行生化特性分析,旨在将其应用于蔗糖的转果糖基反应,以生产果寡糖(FOS)。
通过实验设计,对反应的 pH 值和温度进行优化,使转果糖基活性(A)最大化。固定化酶的 A 表现出由 Hill 模型描述的动力学行为。与可溶性酶相比,固定化 FTase 具有连续六个反应循环的再利用能力,且具有更高的 pH 值和热稳定性。
这些结果表明,硅胶作为 FTase 固定化载体在 FOS 生产中具有很高的应用潜力。