Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA.
Children's Hospital Los Angeles, Los Angeles, California 90027, USA.
Cold Spring Harb Mol Case Stud. 2022 Mar 24;8(2). doi: 10.1101/mcs.a006136. Print 2022 Feb.
Variants in the mitochondrial genome can result in dysfunction of Complex I within the electron transport chain, thus causing disruptions in oxidative phosphorylation. Pathogenic variants in the (NADH:ubiquinone oxidoreductase core subunit 1) gene that result in Complex I dysfunction are a known cause of Leigh syndrome. The patient is a 4-yr-old female who initially presented with generalized tonic-clonic seizures, with other symptoms of Leigh syndrome becoming apparent after the seizures. A three-generation pedigree revealed no family history of mitochondrial disorders. Laboratory studies were remarkable for elevated blood lactate, alanine, and GDF15. T-weighted magnetic resonance imaging (MRI) revealed bilateral asymmetric signal hyperintensities in the basal ganglia, specifically in the bilateral putamen and right caudate. Magnetic resonance spectroscopy showed regionally elevated glucose and lactate. Mitochondrial respiratory chain enzyme analysis on skin fibroblasts demonstrated slightly reduced Complex I function. A 16-gene dystonia panel and chromosomal microarray analysis did not identify any disease-causing variants. Combined exome and mitochondrial genome sequencing identified the m.3685T > C ( p.Tyr127His) variant with 62.3% heteroplasmy with no alternative cause for the patient's condition. Mitochondrial genome sequencing of the mother demonstrated that the m.3685T > C variant occurred de novo. The m.3685T > C variant is absent from population databases. The tyrosine 127 residue is highly conserved, and several nearby pathogenic variants in the gene have been previously associated with Leigh syndrome. We propose that the m.3685T > C variant is a novel mitochondrial DNA variant that causes Leigh syndrome, and we classify this variant as likely pathogenic based on currently available information.
线粒体基因组中的变异可导致电子传递链中的复合物 I 功能障碍,从而导致氧化磷酸化中断。导致复合物 I 功能障碍的 (NADH:泛醌氧化还原酶核心亚单位 1)基因中的致病性变异是 Leigh 综合征的已知病因。该患者为 4 岁女性,最初表现为全面强直阵挛发作,发作后出现 Leigh 综合征的其他症状。三代家族史中未发现线粒体疾病家族史。实验室研究显示血乳酸、丙氨酸和 GDF15 升高。T1 加权磁共振成像(MRI)显示基底节区双侧非对称信号高信号,特别是双侧壳核和右侧尾状核。磁共振波谱显示局部葡萄糖和乳酸升高。皮肤成纤维细胞的线粒体呼吸链酶分析显示复合物 I 功能略有降低。16 基因肌张力障碍组和染色体微阵列分析未发现任何致病变异。外显子组和线粒体基因组测序联合分析发现 m.3685T > C(p.Tyr127His)变异,异质性为 62.3%,患者的病情没有其他原因。母亲的线粒体基因组测序显示 m.3685T > C 变异是新生的。m.3685T > C 变异在人群数据库中不存在。酪氨酸 127 残基高度保守, 基因中几个附近的致病性变异先前与 Leigh 综合征有关。我们提出 m.3685T > C 变异是一种导致 Leigh 综合征的新型线粒体 DNA 变异,根据目前可用的信息,我们将该变异归类为可能的致病性。