Suppr超能文献

一种用于定位寿命和运动性形态预测因子的串联分割-分类方法。

A tandem segmentation-classification approach for the localization of morphological predictors of lifespan and motility.

机构信息

Artificial Intelligence for Life Sciences CIC, London, United Kingdom.

Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR), Görlitz, Germany.

出版信息

Aging (Albany NY). 2022 Feb 25;14(4):1665-1677. doi: 10.18632/aging.203916.

Abstract

is an established model organism for studying genetic and drug effects on aging, many of which are conserved in humans. It is also an important model for basic research, and pathologies is a new emerging field. Here we develop a proof-of-principal convolutional neural network-based platform to segment and extract features that might be useful for lifespan prediction. We use a dataset of 734 worms tracked throughout their lifespan and classify worms into long-lived and short-lived. We designed WormNet - a convolutional neural network (CNN) to predict the worm lifespan class based on young adult images (day 1 - day 3 old adults) and showed that WormNet, as well as, InceptionV3 CNN can successfully classify lifespan. Based on U-Net architecture we develop HydraNet CNNs which allow segmenting worms accurately into anterior, mid-body and posterior parts. We combine HydraNet segmentation, WormNet prediction and the class activation map approach to determine the segments most important for lifespan classification. Such a tandem segmentation-classification approach shows the posterior part of the worm might be more important for classifying long-lived worms. Our approach can be useful for the acceleration of anti-aging drug discovery and for studying pathologies.

摘要

秀丽隐杆线虫是研究遗传和药物对衰老影响的成熟模式生物,其中许多影响在人类中也是保守的。它也是基础研究的重要模型,衰老病理学是一个新兴领域。在这里,我们开发了一个基于卷积神经网络的原理验证平台,用于分割和提取可能有助于寿命预测的特征。我们使用了一个跟踪了 734 条线虫整个生命周期的数据集,并将线虫分为长寿和短寿两类。我们设计了 WormNet——一种卷积神经网络(CNN),可以根据幼年期图像(1-3 天的成年期)预测线虫的寿命类别,并表明 WormNet 和 InceptionV3 CNN 可以成功分类寿命。基于 U-Net 架构,我们开发了 HydraNet CNNs,可以准确地将线虫分割为前、中体和后体部分。我们将 HydraNet 分割、WormNet 预测和类激活图方法相结合,以确定对寿命分类最重要的部分。这种串联分割-分类方法表明,线虫的后体部分可能更有助于分类长寿线虫。我们的方法可用于加速抗衰老药物的发现和研究衰老病理学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10cf/8908923/2369ebffce4e/aging-14-203916-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验