Artificial Intelligence for Life Sciences CIC, London, United Kingdom.
Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR), Görlitz, Germany.
Aging (Albany NY). 2022 Feb 25;14(4):1665-1677. doi: 10.18632/aging.203916.
is an established model organism for studying genetic and drug effects on aging, many of which are conserved in humans. It is also an important model for basic research, and pathologies is a new emerging field. Here we develop a proof-of-principal convolutional neural network-based platform to segment and extract features that might be useful for lifespan prediction. We use a dataset of 734 worms tracked throughout their lifespan and classify worms into long-lived and short-lived. We designed WormNet - a convolutional neural network (CNN) to predict the worm lifespan class based on young adult images (day 1 - day 3 old adults) and showed that WormNet, as well as, InceptionV3 CNN can successfully classify lifespan. Based on U-Net architecture we develop HydraNet CNNs which allow segmenting worms accurately into anterior, mid-body and posterior parts. We combine HydraNet segmentation, WormNet prediction and the class activation map approach to determine the segments most important for lifespan classification. Such a tandem segmentation-classification approach shows the posterior part of the worm might be more important for classifying long-lived worms. Our approach can be useful for the acceleration of anti-aging drug discovery and for studying pathologies.
秀丽隐杆线虫是研究遗传和药物对衰老影响的成熟模式生物,其中许多影响在人类中也是保守的。它也是基础研究的重要模型,衰老病理学是一个新兴领域。在这里,我们开发了一个基于卷积神经网络的原理验证平台,用于分割和提取可能有助于寿命预测的特征。我们使用了一个跟踪了 734 条线虫整个生命周期的数据集,并将线虫分为长寿和短寿两类。我们设计了 WormNet——一种卷积神经网络(CNN),可以根据幼年期图像(1-3 天的成年期)预测线虫的寿命类别,并表明 WormNet 和 InceptionV3 CNN 可以成功分类寿命。基于 U-Net 架构,我们开发了 HydraNet CNNs,可以准确地将线虫分割为前、中体和后体部分。我们将 HydraNet 分割、WormNet 预测和类激活图方法相结合,以确定对寿命分类最重要的部分。这种串联分割-分类方法表明,线虫的后体部分可能更有助于分类长寿线虫。我们的方法可用于加速抗衰老药物的发现和研究衰老病理学。