Suppr超能文献

使用基于简化领域合成图像的神经网络训练策略实现寿命测定的自动化。

Automation of lifespan assay using a simplified domain synthetic image-based neural network training strategy.

作者信息

García-Garví Antonio, Layana-Castro Pablo E, Puchalt Joan Carles, Sánchez-Salmerón Antonio-José

机构信息

Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera S/N, Valencia, 46022, Spain.

出版信息

Comput Struct Biotechnol J. 2023 Oct 10;21:5049-5065. doi: 10.1016/j.csbj.2023.10.007. eCollection 2023.

Abstract

Performing lifespan assays with () nematodes manually is a time consuming and laborious task. Therefore, automation is necessary to increase productivity. In this paper, we propose a method to automate the counting of live using deep learning. The survival curves of the experiment are obtained using a sequence formed by an image taken on each day of the assay. Solving this problem would require a very large labeled dataset; thus, to facilitate its generation, we propose a simplified image-based strategy. This simplification consists of transforming the real images of the nematodes in the Petri dish to a synthetic image, in which circular blobs are drawn on a constant background to mark the position of the . To apply this simplification method, it is divided into two steps. First, a Faster R-CNN network detects the , allowing its transformation into a synthetic image. Second, using the simplified image sequence as input, a regression neural network is in charge of predicting the count of live nematodes on each day of the experiment. In this way, the counting network was trained using a simple simulator, avoiding labeling a very large real dataset or developing a realistic simulator. Results showed that the differences between the curves obtained by the proposed method and the manual curves are not statistically significant for either short-lived N2 (p-value log rank test 0.45) or long-lived (p-value log rank test 0.83) strains.

摘要

手动对()线虫进行寿命测定是一项耗时费力的任务。因此,为提高生产率,自动化是必要的。在本文中,我们提出了一种利用深度学习自动计数活线虫的方法。实验的生存曲线是通过测定期间每天拍摄的图像序列获得的。解决这个问题需要非常大的标记数据集;因此,为便于生成该数据集,我们提出了一种基于图像的简化策略。这种简化包括将培养皿中线虫的真实图像转换为合成图像,在该合成图像中,在恒定背景上绘制圆形斑点以标记线虫的位置。为应用这种简化方法,它分为两个步骤。首先,一个更快的R-CNN网络检测线虫,使其能够转换为合成图像。其次,以简化后的图像序列为输入,一个回归神经网络负责预测实验中每天活线虫的数量。通过这种方式,计数网络使用一个简单的模拟器进行训练,避免了标记非常大的真实数据集或开发逼真的模拟器。结果表明,对于短命的N2(p值对数秩检验为0.45)或长寿的(p值对数秩检验为0.83)品系,所提方法获得的曲线与手动绘制的曲线之间的差异在统计学上不显著。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52df/10589381/7bdf54ca3f54/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验