Wang Peng, Hu Rui, Huang Xiaotian, Wang Teng, Hu Shulin, Hu Min, Xu Huanhuan, Li Xiaoyu, Liu Keshuai, Wang Shengxiang, Kang Lei, Werner Douglas H
Hubei Engineering and Technology Research Center for Functional Fiber Fabrication and Testing, Wuhan Textile University, Wuhan, 430200, China.
School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, 430200, China.
Adv Mater. 2022 Apr;34(16):e2110590. doi: 10.1002/adma.202110590. Epub 2022 Mar 15.
Easy-to-fabricate, large-area, and inexpensive microstructures that realize control of the polarization of terahertz (THz) radiation are of fundamental importance to the development of the field of THz wave photonics. However, due to the lack of natural materials that can facilitate strong THz radiation-matter interactions, THz polarization components remain an undeveloped technology. Strong resonance-based responses offered by THz metamaterials have led to the recent development of THz metadevices, whereas, for polarization control devices, micrometer-scale fabrication techniques including aligned photolithography are generally required to create multilayer microstructures. In this work, leveraging a two-step textile manufacturing approach, a chiral metamaterial capable of exhibiting strong chiroptical responses at THz frequencies is demonstrated. Chiral-selective transmission and pronounced optical activity are experimentally observed. In sharp contrast to smart-clothing-related devices (e.g., textile antennas), the investigated chiral metamaterials gain their THz properties directly from the yarn-twisting enabled microhelical strings. It is envisioned that the interplay between meta-atom designs and textile manufacturing technology will lead to a new family of metadevices for complete control over the phase, amplitude, and polarization of THz radiation.
易于制造、大面积且价格低廉的微结构,能够实现对太赫兹(THz)辐射偏振的控制,这对于太赫兹波光光子学领域的发展至关重要。然而,由于缺乏能够促进强太赫兹辐射与物质相互作用的天然材料,太赫兹偏振组件仍然是一项未开发的技术。太赫兹超材料所提供的基于强共振的响应导致了太赫兹超器件的近期发展,而对于偏振控制器件,通常需要包括对准光刻在内的微米级制造技术来制造多层微结构。在这项工作中,利用两步纺织制造方法,展示了一种能够在太赫兹频率下表现出强烈旋光响应的手性超材料。通过实验观察到手性选择性传输和明显的光学活性。与智能服装相关器件(如纺织天线)形成鲜明对比的是,所研究的手性超材料直接从纱线捻合形成的微螺旋线获得其太赫兹特性。可以预见,超原子设计与纺织制造技术之间的相互作用将导致一类新的超器件,用于完全控制太赫兹辐射的相位、幅度和偏振。