Ge Hongyi, Cao Wenyue, Wang Shun, Ji Xiaodi, Jiang Yuying, Liu Xinxin, Zhou Yitong, Zhang Yuan, Sun Qingcheng, Wang Yuxin
Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China.
Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China.
Nanomaterials (Basel). 2025 Aug 16;15(16):1265. doi: 10.3390/nano15161265.
Terahertz metamaterial devices (TMDs) have demonstrated promising applications in biomass detection, wireless communications, and security inspection. Nevertheless, conventional design methodologies for such devices suffer from extensive iterative optimizations and significant dependence on empirical expertise, substantially prolonging the development cycle. This study proposes a reverse design framework leveraging a deep neural network (DNN) to enable rapid and efficient TMD synthesis, exemplified through a three-band terahertz metamaterial sensor. The developed DNN model achieves high-fidelity predictions (mean squared error = 0.03) and enables rapid inference for structural parameter generation. Experimental validation across four distinct target absorption spectra confirms high consistency between simulated and target responses, with near-identical triple-band resonance characteristics. Benchmarking against traditional CST-based optimization reveals a 36-fold acceleration in design throughput (200-device parameterization reduced from 36 h to 1 h). This work demonstrates a promising strategy for data-driven reverse design of multi-peak terahertz metamaterials, combining computational efficiency with rigorous electromagnetic performance.
太赫兹超材料器件(TMDs)已在生物质检测、无线通信和安全检查等领域展现出了广阔的应用前景。然而,此类器件的传统设计方法存在大量迭代优化且严重依赖经验知识的问题,这极大地延长了开发周期。本研究提出了一种利用深度神经网络(DNN)的逆向设计框架,以实现快速高效的TMD合成,并通过一个三波段太赫兹超材料传感器进行了实例展示。所开发的DNN模型实现了高保真预测(均方误差 = 0.03),并能够快速推断生成结构参数。针对四种不同目标吸收光谱的实验验证证实了模拟响应与目标响应之间具有高度一致性,且具有近乎相同的三波段共振特性。与基于传统CST的优化方法相比,设计通量提高了36倍(200个器件参数化从36小时减少到1小时)。这项工作展示了一种用于多峰太赫兹超材料数据驱动逆向设计的有效策略,将计算效率与严格的电磁性能相结合。