Suppr超能文献

利用替代结局改善部分缺失目标结局的推断。

Leveraging a surrogate outcome to improve inference on a partially missing target outcome.

机构信息

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.

Department of Biostatistics, MD Anderson Cancer Center, Houston, Texas.

出版信息

Biometrics. 2023 Jun;79(2):1472-1484. doi: 10.1111/biom.13629. Epub 2022 Mar 22.

Abstract

Sample sizes vary substantially across tissues in the Genotype-Tissue Expression (GTEx) project, where considerably fewer samples are available from certain inaccessible tissues, such as the substantia nigra (SSN), than from accessible tissues, such as blood. This severely limits power for identifying tissue-specific expression quantitative trait loci (eQTL) in undersampled tissues. Here we propose Surrogate Phenotype Regression Analysis (Spray) for leveraging information from a correlated surrogate outcome (eg, expression in blood) to improve inference on a partially missing target outcome (eg, expression in SSN). Rather than regarding the surrogate outcome as a proxy for the target outcome, Spray jointly models the target and surrogate outcomes within a bivariate regression framework. Unobserved values of either outcome are treated as missing data. We describe and implement an expectation conditional maximization algorithm for performing estimation in the presence of bilateral outcome missingness. Spray estimates the same association parameter estimated by standard eQTL mapping and controls the type I error even when the target and surrogate outcomes are truly uncorrelated. We demonstrate analytically and empirically, using simulations and GTEx data, that in comparison with marginally modeling the target outcome, jointly modeling the target and surrogate outcomes increases estimation precision and improves power.

摘要

样本量在基因-组织表达(GTEx)项目中的各个组织之间存在很大差异,某些难以获取的组织(如黑质(SSN))的样本数量明显少于可获取的组织(如血液)。这严重限制了在采样不足的组织中识别组织特异性表达数量性状基因座(eQTL)的能力。在这里,我们提出了替代表型回归分析(Spray),以利用相关替代结果(例如血液中的表达)的信息来改善对部分缺失目标结果(例如 SSN 中的表达)的推断。Spray 不是将替代结果视为目标结果的代理,而是在双变量回归框架内联合建模目标和替代结果。两个结果中任何一个的未观察值都被视为缺失数据。我们描述并实施了一种期望条件最大化算法,用于在双侧结果缺失的情况下进行估计。Spray 估计了标准 eQTL 映射所估计的相同关联参数,即使目标和替代结果实际上是不相关的,也能控制Ⅰ型错误。我们使用模拟和 GTEx 数据进行了分析和经验验证,结果表明,与边缘建模目标结果相比,联合建模目标和替代结果可以提高估计精度并提高功效。

相似文献

3
Imputing Gene Expression in Uncollected Tissues Within and Beyond GTEx.推断GTEx内部和外部未采集组织中的基因表达。
Am J Hum Genet. 2016 Apr 7;98(4):697-708. doi: 10.1016/j.ajhg.2016.02.020. Epub 2016 Mar 31.
9
Statistical power of transcriptome-wide association studies.转录组关联研究的统计功效。
Genet Epidemiol. 2022 Dec;46(8):572-588. doi: 10.1002/gepi.22491. Epub 2022 Jun 29.

本文引用的文献

6
Parkinson disease.帕金森病。
Nat Rev Dis Primers. 2017 Mar 23;3:17013. doi: 10.1038/nrdp.2017.13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验