Suppr超能文献

一种用于多组织eQTL分析的经验贝叶斯方法。

An empirical Bayes approach for multiple tissue eQTL analysis.

作者信息

Li Gen, Shabalin Andrey A, Rusyn Ivan, Wright Fred A, Nobel Andrew B

机构信息

Department of Biostatistics, Mailman School of Public Health, Columbia University, 722 W 168th St, New York, NY, 10032 USA

Center for Biomarker Research and Personalized Medicine, Virginia Commonwealth University, 1112 East Clay Street, Richmond, VA, 23298 USA.

出版信息

Biostatistics. 2018 Jul 1;19(3):391-406. doi: 10.1093/biostatistics/kxx048.

Abstract

Expression quantitative trait locus (eQTL) analyses identify genetic markers associated with the expression of a gene. Most up-to-date eQTL studies consider the connection between genetic variation and expression in a single tissue. Multi-tissue analyses have the potential to improve findings in a single tissue, and elucidate the genotypic basis of differences between tissues. In this article, we develop a hierarchical Bayesian model (MT-eQTL) for multi-tissue eQTL analysis. MT-eQTL explicitly captures patterns of variation in the presence or absence of eQTL, as well as the heterogeneity of effect sizes across tissues. We devise an efficient Expectation-Maximization (EM) algorithm for model fitting. Inferences concerning eQTL detection and the configuration of eQTL across tissues are derived from the adaptive thresholding of local false discovery rates, and maximum a posteriori estimation, respectively. We also provide theoretical justification of the adaptive procedure. We investigate the MT-eQTL model through an extensive analysis of a 9-tissue data set from the GTEx initiative.

摘要

表达数量性状基因座(eQTL)分析可识别与基因表达相关的遗传标记。大多数最新的eQTL研究考虑的是单一组织中遗传变异与表达之间的联系。多组织分析有可能改进单一组织中的研究结果,并阐明组织间差异的基因型基础。在本文中,我们开发了一种用于多组织eQTL分析的分层贝叶斯模型(MT-eQTL)。MT-eQTL明确捕捉eQTL存在或不存在时的变异模式,以及各组织间效应大小的异质性。我们设计了一种有效的期望最大化(EM)算法用于模型拟合。关于eQTL检测和跨组织eQTL配置的推断分别来自局部错误发现率的自适应阈值化和最大后验估计。我们还提供了自适应程序的理论依据。我们通过对来自GTEx计划的9组织数据集进行广泛分析,研究了MT-eQTL模型。

相似文献

引用本文的文献

4
Distributed eQTL analysis with auxiliary information.结合辅助信息的分布式表达数量性状位点分析。
J Stat Plan Inference. 2024 Jan;228:34-45. doi: 10.1016/j.jspi.2023.06.003. Epub 2023 Jun 28.
6
Hypotheses on a tree: new error rates and testing strategies.树上的假设:新的错误率和检验策略。
Biometrika. 2021 Sep;108(3):575-590. doi: 10.1093/biomet/asaa086. Epub 2020 Oct 14.

本文引用的文献

5
A statistical framework for joint eQTL analysis in multiple tissues.用于多组织中联合 eQTL 分析的统计框架。
PLoS Genet. 2013 May;9(5):e1003486. doi: 10.1371/journal.pgen.1003486. Epub 2013 May 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验