Suppr超能文献

针对人类钴胺素介导的维生素 B 摄取途径的纳米抗体的生成。

Generation of nanobodies targeting the human, transcobalamin-mediated vitamin B uptake route.

机构信息

Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland.

Department of Medicine, SUNY-Downstate Medical Center, Brooklyn, New York, USA.

出版信息

FASEB J. 2022 Apr;36(4):e22222. doi: 10.1096/fj.202101376RR.

Abstract

Cellular uptake of vitamin B in humans is mediated by the endocytosis of the B carrier protein transcobalamin (TC) via its cognate cell surface receptor TCblR, encoded by the CD320 gene. Because CD320 expression is associated with the cell cycle and upregulated in highly proliferating cells including cancer cells, this uptake route is a potential target for cancer therapy. We developed and characterized four camelid nanobodies that bind holo-TC (TC in complex with B ) or the interface of the human holo-TC:TCblR complex with nanomolar affinities. We determined X-ray crystal structures of these nanobodies bound to holo-TC:TCblR, which enabled us to map their binding epitopes. When conjugated to the model toxin saporin, three of our nanobodies caused growth inhibition of HEK293T cells and therefore have the potential to inhibit the growth of human cancer cells. We visualized the cellular binding and endocytic uptake of the most potent nanobody (TC-Nb4) using fluorescent light microscopy. The co-crystal structure of holo-TC:TCblR with another nanobody (TC-Nb34) revealed novel features of the interface of TC and the LDLR-A1 domain of TCblR, rationalizing the decrease in the affinity of TC-B binding caused by the Δ88 mutation in CD320.

摘要

人类维生素 B 的细胞摄取是通过内吞作用完成的,内吞作用通过其同源细胞表面受体转钴胺素(TC)结合蛋白(TCblR)介导,该蛋白由 CD320 基因编码。由于 CD320 的表达与细胞周期有关,并在上皮细胞、神经细胞、造血细胞和癌细胞等增殖细胞中上调,因此这种摄取途径是癌症治疗的潜在靶点。我们开发并鉴定了四种骆驼科纳米抗体,它们以纳摩尔亲和力结合全同型 TC(与 B 结合的 TC)或人全同型 TC:TCblR 复合物的界面。我们确定了这些纳米抗体与全同型 TC:TCblR 结合的 X 射线晶体结构,这使我们能够绘制它们的结合表位。当与模型毒素相思豆蛋白连接时,我们的三种纳米抗体导致 HEK293T 细胞的生长抑制,因此有可能抑制人类癌细胞的生长。我们使用荧光显微镜可视化最有效的纳米抗体(TC-Nb4)的细胞结合和内吞摄取。另一种纳米抗体(TC-Nb34)与全同型 TC:TCblR 的共晶结构揭示了 TC 与 TCblR 的 LDLR-A1 结构域界面的新特征,解释了 CD320 中 Δ88 突变导致 TC-B 结合亲和力降低的原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验