Suppr超能文献

自动评估呼吸信号,以深入了解呼吸驱动。

Automated evaluation of respiratory signals to provide insight into respiratory drive.

机构信息

Department of Physiology, Northwestern University, Chicago, IL 60611, USA; Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA.

Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA.

出版信息

Respir Physiol Neurobiol. 2022 Jun;300:103872. doi: 10.1016/j.resp.2022.103872. Epub 2022 Feb 24.

Abstract

The diaphragm muscle (DIAm) is the primary inspiratory muscle in mammals and is highly active throughout life displaying rhythmic activity. The repetitive activation of the DIAm (and of other muscles driven by central pattern generator activity) presents an opportunity to analyze these physiological data on a per-event basis rather than pooled on a per-subject basis. The present study highlights the development and implementation of a graphical user interface-based algorithm using an analysis of critical points to detect the onsets and offsets of individual respiratory events across a range of motor behaviors, thus facilitating analyses of within-subject variability. The algorithm is designed to be robust regardless of the signal type (e.g., EMG or transdiaphragmatic pressure). Our findings suggest that this approach may be particularly beneficial in reducing animal numbers in certain types of studies, for assessments of perturbation studies where the effects are relatively small but potentially physiologically meaningful, and for analyses of respiratory variability.

摘要

膈肌(DIAm)是哺乳动物的主要吸气肌,在整个生命过程中都高度活跃,表现出有节奏的活动。DIAm 的重复激活(以及由中枢模式发生器活动驱动的其他肌肉的重复激活)为我们提供了一个机会,可以根据每个事件而非每个受试者对这些生理数据进行分析。本研究强调了一种基于图形用户界面的算法的开发和实施,该算法使用关键点分析来检测一系列运动行为中单个呼吸事件的起始和结束,从而便于对受试者内变异性进行分析。该算法设计为无论信号类型(例如,EMG 或跨膈压)如何都具有稳健性。我们的研究结果表明,这种方法在某些类型的研究中减少动物数量可能特别有益,例如在评估相对较小但具有潜在生理学意义的干扰研究中的效果,以及对呼吸变异性的分析。

相似文献

1
Automated evaluation of respiratory signals to provide insight into respiratory drive.
Respir Physiol Neurobiol. 2022 Jun;300:103872. doi: 10.1016/j.resp.2022.103872. Epub 2022 Feb 24.
2
Neuromotor control of spontaneous quiet breathing in awake rats evaluated by assessments of diaphragm EMG stationarity.
J Neurophysiol. 2023 Nov 1;130(5):1344-1357. doi: 10.1152/jn.00267.2023. Epub 2023 Oct 25.
3
Activation of human respiratory muscles during different voluntary manoeuvres.
J Physiol. 1990 Sep;428:387-403. doi: 10.1113/jphysiol.1990.sp018218.
4
Effects of inspiratory muscle training on respiratory muscle electromyography and dyspnea during exercise in healthy men.
J Appl Physiol (1985). 2017 May 1;122(5):1267-1275. doi: 10.1152/japplphysiol.00046.2017. Epub 2017 Mar 2.
5
Synchronization of presynaptic input to motor units of tongue, inspiratory intercostal, and diaphragm muscles.
J Neurophysiol. 2011 May;105(5):2330-6. doi: 10.1152/jn.01078.2010. Epub 2011 Feb 9.
6
Recruitment of rat diaphragm motor units across motor behaviors with different levels of diaphragm activation.
J Appl Physiol (1985). 2014 Dec 1;117(11):1308-16. doi: 10.1152/japplphysiol.01395.2013. Epub 2014 Sep 25.
7
Diaphragm muscle activity across respiratory motor behaviors in awake and lightly anesthetized rats.
J Appl Physiol (1985). 2018 Apr 1;124(4):915-922. doi: 10.1152/japplphysiol.01004.2017. Epub 2018 Jan 4.
8
Semi-automated assessment of transdiaphragmatic pressure variability across motor behaviors.
Respir Physiol Neurobiol. 2015 Aug 15;215:73-81. doi: 10.1016/j.resp.2015.05.009. Epub 2015 May 21.
10
Identification of eupneic breathing using machine learning.
J Neurophysiol. 2024 Sep 1;132(3):678-684. doi: 10.1152/jn.00230.2024. Epub 2024 Jul 25.

引用本文的文献

1
Impact of upper cervical spinal cord hemisection on diaphragm neuromotor control.
J Neurophysiol. 2025 Aug 1;134(2):698-714. doi: 10.1152/jn.00279.2025. Epub 2025 Jul 28.
2
Diaphragm Muscle: A Pump That Can Not Fail.
Physiol Rev. 2025 Jul 11. doi: 10.1152/physrev.00043.2024.
3
An update on spinal cord injury and diaphragm neuromotor control.
Expert Rev Respir Med. 2025 Jul;19(7):679-695. doi: 10.1080/17476348.2025.2495165. Epub 2025 Apr 22.
4
A Simple, Low-Cost Implant for Reliable Diaphragm EMG Recordings in Awake, Behaving Rats.
eNeuro. 2025 Feb 19;12(2). doi: 10.1523/ENEURO.0444-24.2025. Print 2025 Feb.
5
Hypercapnia impacts neural drive and timing of diaphragm neuromotor control.
J Neurophysiol. 2024 Dec 1;132(6):1966-1976. doi: 10.1152/jn.00466.2024. Epub 2024 Nov 16.
6
Identification of eupneic breathing using machine learning.
J Neurophysiol. 2024 Sep 1;132(3):678-684. doi: 10.1152/jn.00230.2024. Epub 2024 Jul 25.
8
Neuromotor control of spontaneous quiet breathing in awake rats evaluated by assessments of diaphragm EMG stationarity.
J Neurophysiol. 2023 Nov 1;130(5):1344-1357. doi: 10.1152/jn.00267.2023. Epub 2023 Oct 25.
9
Chloroquine impairs maximal transdiaphragmatic pressure generation in old mice.
J Appl Physiol (1985). 2023 Nov 1;135(5):1126-1134. doi: 10.1152/japplphysiol.00365.2023. Epub 2023 Oct 12.
10
An automated respiratory data pipeline for waveform characteristic analysis.
J Physiol. 2023 Nov;601(21):4767-4806. doi: 10.1113/JP284363. Epub 2023 Oct 3.

本文引用的文献

1
Automated Classification of Whole Body Plethysmography Waveforms to Quantify Breathing Patterns.
Front Physiol. 2021 Aug 20;12:690265. doi: 10.3389/fphys.2021.690265. eCollection 2021.
2
Breathing variability-implications for anaesthesiology and intensive care.
Crit Care. 2021 Aug 5;25(1):280. doi: 10.1186/s13054-021-03716-0.
3
Acute intrathecal BDNF enhances functional recovery after cervical spinal cord injury in rats.
J Neurophysiol. 2021 Jun 1;125(6):2158-2165. doi: 10.1152/jn.00146.2021. Epub 2021 May 5.
4
TrkB signaling contributes to transdiaphragmatic pressure generation in aged mice.
J Neurophysiol. 2021 Apr 1;125(4):1157-1163. doi: 10.1152/jn.00004.2021. Epub 2021 Feb 17.
5
Automatic unsupervised respiratory analysis of infant respiratory inductance plethysmography signals.
PLoS One. 2020 Sep 11;15(9):e0238402. doi: 10.1371/journal.pone.0238402. eCollection 2020.
6
Brainstem inflammation modulates the ventilatory pattern and its variability after acute lung injury in rodents.
J Physiol. 2020 Jul;598(13):2791-2811. doi: 10.1113/JP279177. Epub 2020 May 21.
7
Inhibition of TrkB kinase activity impairs transdiaphragmatic pressure generation.
J Appl Physiol (1985). 2020 Feb 1;128(2):338-344. doi: 10.1152/japplphysiol.00564.2019. Epub 2020 Jan 16.
8
Diaphragm muscle sarcopenia into very old age in mice.
Physiol Rep. 2020 Jan;8(1):e14305. doi: 10.14814/phy2.14305.
9
Adenosine 2A receptor inhibition protects phrenic motor neurons from cell death induced by protein synthesis inhibition.
Exp Neurol. 2020 Jan;323:113067. doi: 10.1016/j.expneurol.2019.113067. Epub 2019 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验