Department of Physiology, Northwestern University, Chicago, IL 60611, USA; Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA.
Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA.
Respir Physiol Neurobiol. 2022 Jun;300:103872. doi: 10.1016/j.resp.2022.103872. Epub 2022 Feb 24.
The diaphragm muscle (DIAm) is the primary inspiratory muscle in mammals and is highly active throughout life displaying rhythmic activity. The repetitive activation of the DIAm (and of other muscles driven by central pattern generator activity) presents an opportunity to analyze these physiological data on a per-event basis rather than pooled on a per-subject basis. The present study highlights the development and implementation of a graphical user interface-based algorithm using an analysis of critical points to detect the onsets and offsets of individual respiratory events across a range of motor behaviors, thus facilitating analyses of within-subject variability. The algorithm is designed to be robust regardless of the signal type (e.g., EMG or transdiaphragmatic pressure). Our findings suggest that this approach may be particularly beneficial in reducing animal numbers in certain types of studies, for assessments of perturbation studies where the effects are relatively small but potentially physiologically meaningful, and for analyses of respiratory variability.
膈肌(DIAm)是哺乳动物的主要吸气肌,在整个生命过程中都高度活跃,表现出有节奏的活动。DIAm 的重复激活(以及由中枢模式发生器活动驱动的其他肌肉的重复激活)为我们提供了一个机会,可以根据每个事件而非每个受试者对这些生理数据进行分析。本研究强调了一种基于图形用户界面的算法的开发和实施,该算法使用关键点分析来检测一系列运动行为中单个呼吸事件的起始和结束,从而便于对受试者内变异性进行分析。该算法设计为无论信号类型(例如,EMG 或跨膈压)如何都具有稳健性。我们的研究结果表明,这种方法在某些类型的研究中减少动物数量可能特别有益,例如在评估相对较小但具有潜在生理学意义的干扰研究中的效果,以及对呼吸变异性的分析。