National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bethesda, MD 20892 United States; Biological Sciences Graduate Program, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20740 United States.
National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bethesda, MD 20892 United States; Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou 510515, China.
Cell Calcium. 2022 May;103:102564. doi: 10.1016/j.ceca.2022.102564. Epub 2022 Feb 18.
Following calcium-triggered vesicle exocytosis, endocytosis regenerates vesicles to maintain exocytosis and thus synaptic transmission, which underlies neuronal circuit activities. Although most molecules involved in endocytosis have been identified, it remains rather poorly understood how endocytic machinery regulates vesicle size. Vesicle size, together with the transmitter concentration inside the vesicle, determines the amount of transmitter the vesicle can release, the quantal size, that may control the strength of synaptic transmission. Here, we report that, surprisingly, knockout of the GTPase dynamin 1, the most abundant brain dynamin isoform known to catalyze fission of the membrane pit's neck (the last step of endocytosis), not only significantly slowed endocytosis but also increased the synaptic vesicle diameter by as much as ∼40-64% at cultured hippocampal synapses. Furthermore, dynamin 1 knockout increased the size of membrane pits, the precursor for endocytic vesicle formation. These results suggest an important function of dynamin other than its well-known fission function - control of vesicle size at the pit formation stage.
钙触发囊泡胞吐作用后,内吞作用会再生囊泡以维持胞吐作用和突触传递,这是神经元回路活动的基础。虽然已经鉴定出参与内吞作用的大多数分子,但内吞机制如何调节囊泡大小仍知之甚少。囊泡大小与囊泡内的递质浓度共同决定了囊泡可以释放的递质量,即量子大小,这可能控制着突触传递的强度。在这里,我们报告了一个令人惊讶的发现,即 GTPase 动力蛋白 1(dynamin 1)的敲除——已知在催化膜窝颈部(内吞作用的最后一步)分裂中丰度最高的脑动力蛋白同工型,不仅显著减缓了内吞作用,而且还增加了培养海马突触中突触囊泡直径多达约 40-64%。此外, dynamin 1 的敲除增加了膜窝的大小,而膜窝是内吞囊泡形成的前体。这些结果表明,动力蛋白除了其众所周知的分裂功能外,还有一个重要的功能——控制窝形成阶段的囊泡大小。