Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil.
Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil.
Autophagy. 2022 Oct;18(10):2397-2408. doi: 10.1080/15548627.2022.2038501. Epub 2022 Feb 27.
Mutations in the mitochondrial genome (mtDNA) are ubiquitous in humans and can lead to a broad spectrum of disorders. However, due to the presence of multiple mtDNA molecules in the cell, co-existence of mutant and wild-type mtDNAs (termed heteroplasmy) can mask disease phenotype unless a threshold of mutant molecules is reached. Importantly, the mutant mtDNA level can change across lifespan as mtDNA segregates in an allele- and cell-specific fashion, potentially leading to disease. Segregation of mtDNA is mainly evident in hepatic cells, resulting in an age-dependent increase of mtDNA variants, including non-synonymous potentially deleterious mutations. Here we modeled mtDNA segregation using a well-established heteroplasmic mouse line with mtDNA of NZB/BINJ and C57BL/6N origin on a C57BL/6N nuclear background. This mouse line showed a pronounced age-dependent NZB mtDNA accumulation in the liver, thus leading to enhanced respiration capacity per mtDNA molecule. Remarkably, liver-specific (autophagy related 7) knockout abolished NZB mtDNA accumulat ion, resulting in close-to-neutral mtDNA segregation through development into adulthood. (parkin RBR E3 ubiquitin protein ligase) knockout also partially prevented NZB mtDNA accumulation in the liver, but to a lesser extent. Hence, we propose that age-related liver mtDNA segregation is a consequence of macroautophagic clearance of the less-fit mtDNA. Considering that NZB/BINJ and C57BL/6N mtDNAs have a level of divergence comparable to that between human Eurasian and African mtDNAs, these findings have potential implications for humans, including the safe use of mitochondrial replacement therapy. : apolipoprotein B; : autophagy-related 1; : autophagy related 7; : ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1; BL6: C57BL/6N mouse strain; : BCL2/adenovirus E1B interacting protein 3; FCCP: carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; MAP1LC3A: microtubule-associated protein 1 light chain 3 alpha; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; : mitochondrially encoded ATP synthase 8; MT-CO1: mitochondrially encoded cytochrome c oxidase I; MT-CO2: mitochondrially encoded cytochrome c oxidase II; : mitochondrially encoded cytochrome c oxidase III; : mitochondrially encoded cytochrome b; mtDNA: mitochondrial DNA; MUL1: mitochondrial ubiquitin ligase activator of NFKB 1; nDNA: nuclear DNA; : NADH:ubiquinone oxireductase subunit A9; NDUFB8: NADH:ubiquinone oxireductase subunit B8; : nicotinamide nucleotide transhydrogenase; NZB: NZB/BINJ mouse strain; OXPHOS: oxidative phosphorylation; PINK1: PTEN induced putative kinase 1; : polymerase (DNA directed), gamma 2, accessory subunit; : peroxisome proliferator activated receptor alpha; : peptidylprolyl isomerase A; : parkin RBR E3 ubiquitin protein ligase; P10: post-natal day 10; P21: post-natal day 21; P100: post-natal day 100; qPCR: quantitative polymerase chain reaction; : ribosomal protein L19; : ribosomal protein S18; SD: standard deviation; SEM: standard error of the mean; SDHB: succinate dehydrogenase complex, subunit B, iron sulfur (Ip); SQSTM1: sequestosome 1; : single-stranded DNA binding protein 1; TFAM: transcription factor A, mitochondrial; : transcription factor B1, mitochondrial; : transcription factor B2, mitochondrial; TOMM20: translocase of outer mitochondrial membrane 20; UQCRC2: ubiquinol cytochrome c reductase core protein 2; WT: wild-type.
线粒体基因组 (mtDNA) 中的突变在人类中普遍存在,可导致广泛的疾病谱。然而,由于细胞中存在多个 mtDNA 分子,突变型和野生型 mtDNA (称为异质性) 共存可以掩盖疾病表型,除非达到突变分子的阈值。重要的是,随着 mtDNA 以等位基因和细胞特异性的方式分离,mtDNA 水平在整个生命周期中都会发生变化,从而可能导致疾病。mtDNA 的分离主要在肝细胞中明显,导致 mtDNA 变体的年龄依赖性增加,包括非 synonymous潜在有害突变。在这里,我们使用一个经过充分验证的异质小鼠系来模拟 mtDNA 分离,该小鼠系具有新西兰 BINJ 和 C57BL/6N 来源的 mtDNA,背景为 C57BL/6N 核。该小鼠系在肝脏中表现出明显的年龄依赖性 NZB mtDNA 积累,从而导致每个 mtDNA 分子的呼吸能力增强。值得注意的是,肝特异性 (自噬相关 7) 敲除消除了 NZB mtDNA 的积累,从而通过发育到成年期接近中性的 mtDNA 分离。 (Parkin RBR E3 泛素蛋白连接酶) 敲除也部分阻止了 NZB mtDNA 在肝脏中的积累,但程度较小。因此,我们提出与年龄相关的肝脏 mtDNA 分离是较少适应 mtDNA 通过巨自噬清除的结果。考虑到新西兰 BINJ 和 C57BL/6N mtDNA 的差异水平与人类欧亚和非洲 mtDNA 之间的差异水平相当,这些发现对人类具有潜在影响,包括线粒体替代疗法的安全使用。载脂蛋白 B;自噬相关 1;自噬相关 7;ATP 合酶,H+转运,线粒体 F1 复合物,α亚基 1;BL6:C57BL/6N 小鼠品系;BCL2/腺病毒 E1B 相互作用蛋白 3;碳酰氰化物 4-(三氟甲氧基)苯腙;甘油醛-3-磷酸脱氢酶;微管相关蛋白 1 轻链 3α;微管相关蛋白 1 轻链 3β;线粒体编码的 ATP 合酶 8;MT-CO1:线粒体编码的细胞色素 c 氧化酶 I;MT-CO2:线粒体编码的细胞色素 c 氧化酶 II;线粒体编码的细胞色素 c 氧化酶 III;线粒体编码的细胞色素 b;mtDNA:线粒体 DNA;MUL1:线粒体泛素连接酶激活因子 NFKB 1;nDNA:核 DNA;NADH:泛醌氧化还原酶亚单位 A9;NDUFB8:NADH:泛醌氧化还原酶亚单位 B8;烟酰胺核苷酸转氢酶;新西兰 BINJ 小鼠系;氧化磷酸化;PTEN 诱导的假定激酶 1;聚合酶 (DNA 指导),γ 2,辅助亚基;过氧化物酶体增殖物激活受体α;肽基脯氨酰异构酶 A;Parkin RBR E3 泛素蛋白连接酶;P10:出生后第 10 天;P21:出生后第 21 天;P100:出生后第 100 天;qPCR:定量聚合酶链反应;核糖体蛋白 L19;核糖体蛋白 S18;标准差;均数的标准误差;SDHB:琥珀酸脱氢酶复合物,亚基 B,铁硫 (Ip);SQSTM1:自噬体 1;单链 DNA 结合蛋白 1;TFAM:线粒体转录因子 A;转录因子 B1,线粒体;转录因子 B2,线粒体;TOMM20:外线粒体膜转位酶 20;UQCRC2:泛醌细胞色素 c 还原酶核心蛋白 2;WT:野生型。