Suppr超能文献

基于深度迁移学习模型,从胸部X光图像中识别农村和偏远地区人群的新冠肺炎。

Recognizing COVID-19 from chest X-ray images for people in rural and remote areas based on deep transfer learning model.

作者信息

Qjidaa Mamoun, Ben-Fares Anass, Amakdouf Hicham, El Mallahi Mostafa, Alami Badre-Eddine, Maaroufi Mustapha, Lakhssassi Ahmed, Qjidaa Hassan

机构信息

Faculty of Medicine and Pharmacy, Department of Radiology, Sidi Mohamed Ben Abdellah University, Fez, Morocco.

Faculty of Sciences Dhar El Mahraz, Laboratory of Computer Science Signals Automation and Cognitivism, Sidi Mohamed Ben Abdellah University, Fez, Morocco.

出版信息

Multimed Tools Appl. 2022;81(9):13115-13135. doi: 10.1007/s11042-022-12030-y. Epub 2022 Feb 23.

Abstract

In this article, we propose Deep Transfer Learning (DTL) Model for recognizing covid-19 from chest x-ray images. The latter is less expensive, easily accessible to populations in rural and remote areas. In addition, the device for acquiring these images is easy to disinfect, clean and maintain. The main challenge is the lack of labeled training data needed to train convolutional neural networks. To overcome this issue, we propose to leverage Deep Transfer Learning architecture pre-trained on ImageNet dataset and trained Fine-Tuning on a dataset prepared by collecting normal, COVID-19, and other chest pneumonia X-ray images from different available databases. We take the weights of the layers of each network already pre-trained to our model and we only train the last layers of the network on our collected COVID-19 image dataset. In this way, we will ensure a fast and precise convergence of our model despite the small number of COVID-19 images collected. In addition, for improving the accuracy of our global model will only predict at the output the prediction having obtained a maximum score among the predictions of the seven pre-trained CNNs. The proposed model will address a three-class classification problem: COVID-19 class, pneumonia class, and normal class. To show the location of the important regions of the image which strongly participated in the prediction of the considered class, we will use the Gradient Weighted Class Activation Mapping (Grad-CAM) approach. A comparative study was carried out to show the robustness of the prediction of our model compared to the visual prediction of radiologists. The proposed model is more efficient with a test accuracy of 98%, an f1 score of 98.33%, an accuracy of 98.66% and a sensitivity of 98.33% at the time when the prediction by renowned radiologists could not exceed an accuracy of 63.34% with a sensitivity of 70% and an f1 score of 66.67%.

摘要

在本文中,我们提出了用于从胸部X光图像中识别新冠病毒的深度迁移学习(DTL)模型。胸部X光检查成本较低,农村和偏远地区的人群也易于获得。此外,获取这些图像的设备易于消毒、清洁和维护。主要挑战在于缺乏训练卷积神经网络所需的带标签训练数据。为克服这一问题,我们建议利用在ImageNet数据集上预训练的深度迁移学习架构,并在通过从不同可用数据库收集正常、新冠病毒和其他胸部肺炎X光图像而准备的数据集上进行微调训练。我们将每个已在我们模型上预训练的网络层的权重拿来使用,并且仅在我们收集的新冠病毒图像数据集上训练网络的最后几层。通过这种方式,尽管收集的新冠病毒图像数量较少,我们仍将确保模型快速且精确地收敛。此外,为提高我们全局模型的准确性,将仅在输出端预测在七个预训练的卷积神经网络的预测中获得最高分的预测结果。所提出的模型将解决一个三类分类问题:新冠病毒类、肺炎类和正常类。为了展示图像中对所考虑类别的预测有强烈贡献的重要区域的位置,我们将使用梯度加权类激活映射(Grad-CAM)方法。进行了一项对比研究,以表明我们模型的预测相较于放射科医生的视觉预测具有更强的稳健性。所提出的模型效率更高,测试准确率为98%,F1分数为98.33%,精确率为98.66%,敏感度为98.33%,而著名放射科医生的预测准确率最高不超过63.34%,敏感度为70%,F1分数为66.67%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6619/8863907/999554918f22/11042_2022_12030_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验