Suppr超能文献

确定全连接层隐藏神经元数量用于迁移学习,使用知识蒸馏:以肺炎和 COVID-19 的胸部 X 射线分类为例。

Determining Top Fully Connected Layer's Hidden Neuron Count for Transfer Learning, Using Knowledge Distillation: a Case Study on Chest X-Ray Classification of Pneumonia and COVID-19.

机构信息

Department of Mining Engineering, Indian Institute of Engineering Science and Technology, Shibpur, P.O, Botanical Garden, Howrah, West Bengal, 711103, India.

出版信息

J Digit Imaging. 2021 Dec;34(6):1349-1358. doi: 10.1007/s10278-021-00518-2. Epub 2021 Sep 29.

Abstract

Deep convolutional neural network (CNN)-assisted classification of images is one of the most discussed topics in recent years. Continuously innovation of neural network architectures is making it more correct and efficient every day. But training a neural network from scratch is very time-consuming and requires a lot of sophisticated computational equipment and power. So, using some pre-trained neural network as feature extractor for any image classification task or "transfer learning" is a very popular approach that saves time and computational power for practical use of CNNs. In this paper, an efficient way of building full model from any pre-trained model with high accuracy and low memory is proposed using knowledge distillation. Using the distilled knowledge of the last layer of pre-trained networks passes through fully connected layers with different hidden layers, followed by Softmax layer. The accuracies of student networks are mildly lesser than the whole models, but accuracy of student models clearly indicates the accuracy of the real network. In this way, the best number of hidden layers for dense layer for that pre-trained network with best accuracy and no-overfitting can be found with less time. Here, VGG16 and VGG19 (pre-trained upon "ImageNet" dataset) is tested upon chest X-rays (pneumonia and COVID-19). For finding the best total number of hidden layers, it saves nearly 44 min for VGG19 and 36 min and 37 s for VGG16 feature extractor.

摘要

深度卷积神经网络(CNN)辅助图像分类是近年来讨论最多的话题之一。神经网络架构的不断创新使得它每天都变得更加准确和高效。但是,从零开始训练神经网络非常耗时,并且需要大量复杂的计算设备和电力。因此,使用一些预先训练的神经网络作为任何图像分类任务的特征提取器或“迁移学习”是一种非常流行的方法,可以节省时间和计算能力,以便在实际中使用 CNN。在本文中,提出了一种使用知识蒸馏从任何预先训练的模型构建全模型的高效方法,该方法具有高精度和低内存。使用预先训练网络最后一层的蒸馏知识通过具有不同隐藏层的全连接层,然后是 Softmax 层。学生网络的准确率略低于整个模型,但学生模型的准确率清楚地表明了真实网络的准确率。通过这种方式,可以在更短的时间内找到具有最佳精度和无过拟合的最佳密集层隐藏层数量。在这里,测试了 VGG16 和 VGG19(在“ImageNet”数据集上预先训练)在胸部 X 光片(肺炎和 COVID-19)上的性能。为了找到最佳的总隐藏层数,VGG19 节省了近 44 分钟,VGG16 特征提取器节省了 36 分钟和 37 秒。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验