Suppr超能文献

时空高分辨率预测与绘图:登革热疾病的方法与应用

Spatiotemporal high-resolution prediction and mapping: methodology and application to dengue disease.

作者信息

Jaya I Gede Nyoman Mindra, Folmer Henk

机构信息

Faculty of Spatial Sciences, University of Groningen, Groningen, The Netherlands.

Statistics Department, Padjadjaran University, Bandung, Indonesia.

出版信息

J Geogr Syst. 2022;24(4):527-581. doi: 10.1007/s10109-021-00368-0. Epub 2022 Feb 19.

Abstract

UNLABELLED

Dengue disease has become a major public health problem. Accurate and precise identification, prediction and mapping of high-risk areas are crucial elements of an effective and efficient early warning system in countering the spread of dengue disease. In this paper, we present the fusion area-cell spatiotemporal generalized geoadditive-Gaussian Markov random field (FGG-GMRF) framework for joint estimation of an area-cell model, involving temporally varying coefficients, spatially and temporally structured and unstructured random effects, and spatiotemporal interaction of the random effects. The spatiotemporal Gaussian field is applied to determine the unobserved relative risk at cell level. It is transformed to a Gaussian Markov random field using the finite element method and the linear stochastic partial differential equation approach to solve the "big " problem. Sub-area relative risk estimates are obtained as block averages of the cell outcomes within each sub-area boundary. The FGG-GMRF model is estimated by applying Bayesian Integrated Nested Laplace Approximation. In the application to Bandung city, Indonesia, we combine low-resolution area level (district) spatiotemporal data on population at risk and incidence and high-resolution cell level data on weather variables to obtain predictions of relative risk at subdistrict level. The predicted dengue relative risk at subdistrict level suggests significant fine-scale heterogeneities which are not apparent when examining the area level. The relative risk varies considerably across subdistricts and time, with the latter showing an increase in the period January-July and a decrease in the period August-December.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s10109-021-00368-0.

摘要

未标注

登革热已成为一个主要的公共卫生问题。准确精确地识别、预测和绘制高风险区域是有效且高效的登革热疾病传播早期预警系统的关键要素。在本文中,我们提出了融合区域 - 单元格时空广义地理加法 - 高斯马尔可夫随机场(FGG - GMRF)框架,用于联合估计区域 - 单元格模型,该模型涉及随时间变化的系数、空间和时间上结构化与非结构化的随机效应以及随机效应的时空交互作用。应用时空高斯场来确定单元格层面未观测到的相对风险。使用有限元方法和线性随机偏微分方程方法将其转换为高斯马尔可夫随机场,以解决“大”问题。通过每个子区域边界内单元格结果的块平均值获得子区域相对风险估计值。FGG - GMRF模型通过应用贝叶斯集成嵌套拉普拉斯近似进行估计。在印度尼西亚万隆市的应用中,我们将低分辨率区域层面(行政区)的高危人群时空数据和发病率数据与高分辨率单元格层面的气象变量数据相结合,以获得街道层面相对风险的预测值。街道层面预测的登革热相对风险表明存在显著的精细尺度异质性,而在区域层面检查时并不明显。相对风险在不同街道和不同时间有很大差异,后者在1月至7月期间呈上升趋势,在8月至12月期间呈下降趋势。

补充信息

在线版本包含可在10.1007/s10109 - 021 - 00368 - 0获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eeb/8857957/8f06299bfe22/10109_2021_368_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验