Suppr超能文献

基于子网划分的低阶和高阶功能连接分层同步估计用于自闭症谱系障碍的诊断

Hierarchical Synchronization Estimation of Low- and High-Order Functional Connectivity Based on Sub-Network Division for the Diagnosis of Autism Spectrum Disorder.

作者信息

Zhao Feng, Han Zhongwei, Cheng Dapeng, Mao Ning, Chen Xiaobo, Li Yuan, Fan Deming, Liu Peiqiang

机构信息

School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China.

Department of Radiology, Yantai Yuhuangding Hospital, Yantai, China.

出版信息

Front Neurosci. 2022 Feb 10;15:810431. doi: 10.3389/fnins.2021.810431. eCollection 2021.

Abstract

Functional connectivity network (FCN) calculated by resting-state functional magnetic resonance imaging (rs-fMRI) plays an increasingly important role in the exploration of neurologic and mental diseases. Among the presented researches, the method of constructing FCN based on Matrix Variate Normal Distribution (MVND) theory provides a novel perspective, which can capture both low- and high-order correlations simultaneously with a clear mathematical interpretability. However, when fitting MVND model, the dimension of the parameters (i.e., population mean and population covariance) to be estimated is too high, but the number of samples is relatively quite small, which is insufficient to achieve accurate fitting. To address the issue, we divide the brain network into several sub-networks, and then the MVND based FCN construction algorithm is implemented in each sub-network, thus the spatial dimension of MVND is reduced and more accurate estimates of low- and high-order FCNs is obtained. Furthermore, for making up the functional connectivity which is lost because of the sub-network division, the rs-fMRI mean series of all sub-networks are calculated, and the low- and high-order FCN across sub-networks are estimated with the MVND based FCN construction method. In order to prove the superiority and effectiveness of this method, we design and conduct classification experiments on ASD patients and normal controls. The experimental results show that the classification accuracy of "hierarchical sub-network method" is greatly improved, and the sub-network found most related to ASD in our experiment is consistent with other related medical researches.

摘要

通过静息态功能磁共振成像(rs-fMRI)计算得到的功能连接网络(FCN)在神经和精神疾病的探索中发挥着越来越重要的作用。在已发表的研究中,基于矩阵变量正态分布(MVND)理论构建FCN的方法提供了一个新的视角,该方法能够同时捕捉低阶和高阶相关性,且具有清晰的数学可解释性。然而,在拟合MVND模型时,待估计参数(即总体均值和总体协方差)的维度过高,而样本数量相对较少,不足以实现精确拟合。为了解决这个问题,我们将脑网络划分为几个子网络,然后在每个子网络中实施基于MVND的FCN构建算法,从而降低了MVND的空间维度,并获得了更准确的低阶和高阶FCN估计。此外,为了弥补由于子网络划分而丢失的功能连接,我们计算了所有子网络的rs-fMRI均值序列,并使用基于MVND的FCN构建方法估计跨子网络的低阶和高阶FCN。为了证明该方法的优越性和有效性,我们对自闭症谱系障碍(ASD)患者和正常对照进行了分类实验。实验结果表明,“分层子网络方法”的分类准确率有了很大提高,并且我们实验中发现的与ASD最相关的子网络与其他相关医学研究结果一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fea4/8867086/e58fc721a589/fnins-15-810431-g001.jpg

相似文献

2
Constructing high-order functional networks based on hypergraph for diagnosis of autism spectrum disorders.
Front Neurosci. 2023 Aug 31;17:1257982. doi: 10.3389/fnins.2023.1257982. eCollection 2023.
3
Constructing Multi-View High-Order Functional Connectivity Networks for Diagnosis of Autism Spectrum Disorder.
IEEE Trans Biomed Eng. 2022 Mar;69(3):1237-1250. doi: 10.1109/TBME.2021.3122813. Epub 2022 Feb 18.
5
Simultaneous Estimation of Low- and High-Order Functional Connectivity for Identifying Mild Cognitive Impairment.
Front Neuroinform. 2018 Feb 6;12:3. doi: 10.3389/fninf.2018.00003. eCollection 2018.
7
Learning to Fuse Multiple Brain Functional Networks for Automated Autism Identification.
Biology (Basel). 2023 Jul 8;12(7):971. doi: 10.3390/biology12070971.
8
Improving Sparsity and Modularity of High-Order Functional Connectivity Networks for MCI and ASD Identification.
Front Neurosci. 2018 Dec 18;12:959. doi: 10.3389/fnins.2018.00959. eCollection 2018.
9
Multi-Scale Graph Representation Learning for Autism Identification With Functional MRI.
Front Neuroinform. 2022 Jan 13;15:802305. doi: 10.3389/fninf.2021.802305. eCollection 2021.

引用本文的文献

1
The diagnosis of ASD with MRI: a systematic review and meta-analysis.
Transl Psychiatry. 2024 Aug 2;14(1):318. doi: 10.1038/s41398-024-03024-5.
2
A Similarity Measure-Based Approach Using RS-fMRI Data for Autism Spectrum Disorder Diagnosis.
Diagnostics (Basel). 2023 Jan 6;13(2):218. doi: 10.3390/diagnostics13020218.
3
A pairwise functional connectivity similarity measure method based on few-shot learning for early MCI detection.
Front Neurosci. 2022 Dec 19;16:1081788. doi: 10.3389/fnins.2022.1081788. eCollection 2022.

本文引用的文献

1
Estimating sparse functional connectivity networks via hyperparameter-free learning model.
Artif Intell Med. 2021 Jan;111:102004. doi: 10.1016/j.artmed.2020.102004. Epub 2020 Dec 24.
2
Multiview Feature Learning With Multiatlas-Based Functional Connectivity Networks for MCI Diagnosis.
IEEE Trans Cybern. 2022 Jul;52(7):6822-6833. doi: 10.1109/TCYB.2020.3016953. Epub 2022 Jul 4.
4
Improving Sparsity and Modularity of High-Order Functional Connectivity Networks for MCI and ASD Identification.
Front Neurosci. 2018 Dec 18;12:959. doi: 10.3389/fnins.2018.00959. eCollection 2018.
5
Constructing Multi-frequency High-Order Functional Connectivity Network for Diagnosis of Mild Cognitive Impairment.
Connectomics Neuroimaging (2017). 2017;10511:9-16. doi: 10.1007/978-3-319-67159-8_2. Epub 2017 Sep 2.
6
Diagnosis of Autism Spectrum Disorders Using Multi-Level High-Order Functional Networks Derived From Resting-State Functional MRI.
Front Hum Neurosci. 2018 May 14;12:184. doi: 10.3389/fnhum.2018.00184. eCollection 2018.
7
Connectomic markers of symptom severity in sport-related concussion: Whole-brain analysis of resting-state fMRI.
Neuroimage Clin. 2018 Feb 17;18:518-526. doi: 10.1016/j.nicl.2018.02.011. eCollection 2018.
8
Simultaneous Estimation of Low- and High-Order Functional Connectivity for Identifying Mild Cognitive Impairment.
Front Neuroinform. 2018 Feb 6;12:3. doi: 10.3389/fninf.2018.00003. eCollection 2018.
9
The Default Mode Network in Autism.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2017 Sep;2(6):476-486. doi: 10.1016/j.bpsc.2017.04.004.
10
Frequency dependent hub role of the dorsal and ventral right anterior insula.
Neuroimage. 2018 Jan 15;165:112-117. doi: 10.1016/j.neuroimage.2017.10.004. Epub 2017 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验