Zhang Xiangfei, Shams Shayel Parvez, Yu Hang, Wang Zhengxia, Zhang Qingchen
School of Cyberspace Security, Hainan University, Haikou, China.
School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China.
Front Neurosci. 2022 Dec 19;16:1081788. doi: 10.3389/fnins.2022.1081788. eCollection 2022.
Alzheimer's disease is an irreversible neurological disease, therefore prompt diagnosis during its early stage, i.e., early mild cognitive impairment (MCI), is crucial for effective treatment. In this paper, we propose an automatic diagnosis method, a few-shot learning-based pairwise functional connectivity (FC) similarity measure method, to detect early MCI. We first employ a sliding window strategy to generate a dynamic functional connectivity network (FCN) using each subject's rs-fMRI data. Then, normal controls (NCs) and early MCI patients are distinguished by measuring the similarity between the dynamic FC series of corresponding brain regions of interest (ROIs) pairs in different subjects. However, previous studies have shown that FC patterns in different ROI-pairs contribute differently to disease classification. To enable the FCs of different ROI-pairs to make corresponding contributions to disease classification, we adopt a self-attention mechanism to weight the FC features. We evaluated the suggested strategy using rs-fMRI data obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and the results point to the viability of our approach for detecting MCI at an early stage.
阿尔茨海默病是一种不可逆的神经疾病,因此在其早期阶段,即早期轻度认知障碍(MCI)阶段进行及时诊断,对于有效治疗至关重要。在本文中,我们提出了一种自动诊断方法,即基于少样本学习的成对功能连接(FC)相似性度量方法,用于检测早期MCI。我们首先采用滑动窗口策略,利用每个受试者的静息态功能磁共振成像(rs-fMRI)数据生成动态功能连接网络(FCN)。然后,通过测量不同受试者中对应感兴趣脑区(ROI)对的动态FC序列之间的相似性,区分正常对照(NC)和早期MCI患者。然而,先前的研究表明,不同ROI对中的FC模式对疾病分类的贡献不同。为了使不同ROI对的FC对疾病分类做出相应贡献,我们采用自注意力机制对FC特征进行加权。我们使用从阿尔茨海默病神经影像倡议(ADNI)数据库获得的rs-fMRI数据评估了所提出的策略,结果表明我们的方法在早期检测MCI方面具有可行性。