Suppr超能文献

用于从脑电图信号中去除眨眼伪迹的卷积神经网络的实现

Implementation of a Convolutional Neural Network for Eye Blink Artifacts Removal From the Electroencephalography Signal.

作者信息

Jurczak Marcin, Kołodziej Marcin, Majkowski Andrzej

机构信息

Institute of Theory of Electrical Engineering, Measurement and Information Systems, Warsaw University of Technology, Warsaw, Poland.

出版信息

Front Neurosci. 2022 Feb 11;16:782367. doi: 10.3389/fnins.2022.782367. eCollection 2022.

Abstract

Electroencephalography (EEG) signals are disrupted by technical and physiological artifacts. One of the most common artifacts is the natural activity that results from the movement of the eyes and the blinking of the subject. Eye blink artifacts (EB) spread across the entire head surface and make EEG signal analysis difficult. Methods for the elimination of electrooculography (EOG) artifacts, such as independent component analysis (ICA) and regression, are known. The aim of this article was to implement the convolutional neural network (CNN) to eliminate eye blink artifacts. To train the CNN, a method for augmenting EEG signals was proposed. The results obtained from the CNN were compared with the results of the ICA and regression methods for the generated and real EEG signals. The results obtained indicate a much better performance of the CNN in the task of removing eye-blink artifacts, in particular for the electrodes located in the central part of the head.

摘要

脑电图(EEG)信号会受到技术和生理伪迹的干扰。最常见的伪迹之一是由受试者眼睛运动和眨眼产生的自然活动。眨眼伪迹(EB)会扩散到整个头部表面,使得脑电图信号分析变得困难。消除眼电图(EOG)伪迹的方法,如独立成分分析(ICA)和回归法,是已知的。本文的目的是实现卷积神经网络(CNN)来消除眨眼伪迹。为了训练CNN,提出了一种增强脑电图信号的方法。将CNN得到的结果与ICA和回归法对生成的和真实的脑电图信号的处理结果进行了比较。所得结果表明,CNN在去除眨眼伪迹的任务中表现得更好,特别是对于位于头部中央部分的电极。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7b/8874023/7600efe492ca/fnins-16-782367-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验