Suppr超能文献

一种基于脑电图功能连接的轻度抑郁症识别深度学习方法。

A Deep Learning Approach for Mild Depression Recognition Based on Functional Connectivity Using Electroencephalography.

作者信息

Li Xiaowei, La Rong, Wang Ying, Hu Bin, Zhang Xuemin

机构信息

Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China.

CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.

出版信息

Front Neurosci. 2020 Apr 1;14:192. doi: 10.3389/fnins.2020.00192. eCollection 2020.

Abstract

Early detection remains a significant challenge for the treatment of depression. In our work, we proposed a novel approach to mild depression recognition using electroencephalography (EEG). First, we explored abnormal organization in the functional connectivity network of mild depression using graph theory. Second, we proposed a novel classification model for recognizing mild depression. Considering the powerful ability of CNN to process two-dimensional data, we applied CNN separately to the two-dimensional data form of the functional connectivity matrices from five EEG bands (delta, theta, alpha, beta, and gamma). In addition, inspired by recent breakthroughs in the ability of deep recurrent CNNs to classify mental load, we merged the functional connectivity matrices from the three EEG bands that performed the best into a three-channel image to classify mild depression-related and normal EEG signals using the CNN. The results of the graph theory analysis showed that the brain functional network of the mild depression group had a larger characteristic path length and a lower clustering coefficient than the healthy control group, showing deviation from the small-world network. The proposed classification model obtained a classification accuracy of 80.74% for recognizing mild depression. The current study suggests that the combination of a CNN and functional connectivity matrix may provide a promising objective approach for diagnosing mild depression. Deep learning approaches such as this might have the potential to inform clinical practice and aid in research on psychiatric disorders.

摘要

早期检测仍然是抑郁症治疗面临的一项重大挑战。在我们的研究中,我们提出了一种利用脑电图(EEG)识别轻度抑郁症的新方法。首先,我们使用图论探索了轻度抑郁症功能连接网络中的异常组织。其次,我们提出了一种用于识别轻度抑郁症的新型分类模型。考虑到卷积神经网络(CNN)处理二维数据的强大能力,我们将CNN分别应用于来自五个脑电波段(δ波、θ波、α波、β波和γ波)的功能连接矩阵的二维数据形式。此外,受深度循环CNN在分类心理负荷能力方面近期突破的启发,我们将表现最佳的三个脑电波段的功能连接矩阵合并为一个三通道图像,以使用CNN对与轻度抑郁症相关的脑电信号和正常脑电信号进行分类。图论分析结果表明,轻度抑郁症组的脑功能网络比健康对照组具有更大的特征路径长度和更低的聚类系数,表现出与小世界网络的偏差。所提出的分类模型在识别轻度抑郁症方面获得了80.74%的分类准确率。当前研究表明,CNN与功能连接矩阵的结合可能为诊断轻度抑郁症提供一种有前景的客观方法。这样的深度学习方法可能有潜力为临床实践提供信息,并有助于精神疾病的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c230/7142271/16207f664fcf/fnins-14-00192-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验