Suppr超能文献

早期肺腺癌中新型复发相关脂质代谢特征的临床意义及免疫代谢图谱:全面分析。

Clinical Significance and Immunometabolism Landscapes of a Novel Recurrence-Associated Lipid Metabolism Signature In Early-Stage Lung Adenocarcinoma: A Comprehensive Analysis.

机构信息

Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.

National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

出版信息

Front Immunol. 2022 Feb 10;13:783495. doi: 10.3389/fimmu.2022.783495. eCollection 2022.

Abstract

BACKGROUND

The early-stage lung adenocarcinoma (LUAD) incidence has increased with heightened public awareness and lung cancer screening implementation. Lipid metabolism abnormalities are associated with lung cancer initiation and progression. However, the comprehensive features and clinical significance of the immunometabolism landscape and lipid metabolism-related genes (LMRGs) in cancer recurrence for early-stage LUAD remain obscure.

METHODS

LMRGs were extracted from Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Samples from The Cancer Genome Atlas (TCGA) were used as training cohort, and samples from four Gene Expression Omnibus (GEO) datasets were used as validation cohorts. The LUAD recurrence-associated LMRG molecular pattern and signature was constructed through unsupervised consensus clustering, time-dependent receiver operating characteristic (ROC), and least absolute shrinkage and selection operator (LASSO) analyses. Kaplan-Meier, ROC, and multivariate Cox regression analyses and prognostic meta-analysis were used to test the suitability and stability of the signature. We used Gene Ontology (GO), KEGG pathway, immune cell infiltration, chemotherapy response analyses, gene set variation analysis (GSVA), and GSEA to explore molecular mechanisms and immune landscapes related to the signature and the potential of the signature to predict immunotherapy or chemotherapy response.

RESULTS

First, two LMRG molecular patterns were established, which showed diverse prognoses and immune infiltration statuses. Then, a 12-gene signature was identified, and a risk model was built. The signature remained an independent prognostic parameter in multivariate Cox regression and prognostic meta-analysis. In addition, this signature stratified patients into high- and low-risk groups with significantly different recurrence rates and was well validated in different clinical subgroups and several independent validation cohorts. The results of GO and KEGG analyses and GSEA showed that there were differences in multiple lipid metabolism, immune response, and drug metabolism pathways between the high- and low-risk groups. Further analyses revealed that the signature-based risk model was related to distinct immune cell proportions, immune checkpoint parameters, and immunotherapy and chemotherapy response, consistent with the GO, KEGG, and GSEA results.

CONCLUSIONS

This is the first lipid metabolism-based signature for predicting recurrence, and it could provide vital guidance to achieve optimized antitumor for immunotherapy or chemotherapy for early-stage LUAD.

摘要

背景

随着公众意识的提高和肺癌筛查的实施,早期肺腺癌 (LUAD) 的发病率有所增加。脂质代谢异常与肺癌的发生和发展有关。然而,早期 LUAD 癌症复发的免疫代谢景观和脂质代谢相关基因 (LMRGs) 的综合特征和临床意义仍不清楚。

方法

从基因集富集分析 (GSEA) 和京都基因与基因组百科全书 (KEGG) 数据库中提取 LMRGs。使用来自癌症基因组图谱 (TCGA) 的样本作为训练队列,使用来自四个基因表达综合 (GEO) 数据集的样本作为验证队列。通过无监督共识聚类、时间依赖性接收器操作特征 (ROC) 和最小绝对收缩和选择算子 (LASSO) 分析构建 LUAD 复发相关 LMRG 分子模式和特征。Kaplan-Meier、ROC 和多变量 Cox 回归分析以及预后荟萃分析用于测试特征的适用性和稳定性。我们使用基因本体论 (GO)、KEGG 通路、免疫细胞浸润、化疗反应分析、基因集变异分析 (GSVA) 和 GSEA 来探讨与特征相关的分子机制和免疫景观,以及特征预测免疫治疗或化疗反应的潜力。

结果

首先,建立了两种 LMRG 分子模式,它们显示出不同的预后和免疫浸润状态。然后,确定了一个 12 基因特征,并构建了一个风险模型。该特征在多变量 Cox 回归和预后荟萃分析中仍然是一个独立的预后参数。此外,该特征在不同的临床亚组和几个独立的验证队列中对患者进行分层,具有显著不同的复发率,并得到了很好的验证。GO 和 KEGG 分析以及 GSEA 的结果表明,高风险组和低风险组之间存在多种脂质代谢、免疫反应和药物代谢途径的差异。进一步分析表明,基于特征的风险模型与不同的免疫细胞比例、免疫检查点参数以及免疫治疗和化疗反应有关,与 GO、KEGG 和 GSEA 的结果一致。

结论

这是第一个基于脂质代谢的预测复发的特征,可以为早期 LUAD 的免疫治疗或化疗实现最佳抗肿瘤提供重要指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/115b/8867215/ad77444cca52/fimmu-13-783495-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验