Riedl Christoph, Siebenhofer Matthäus, Nenning Andreas, Friedbacher Gernot, Weiss Maximilian, Rameshan Christoph, Bernardi Johannes, Limbeck Andreas, Kubicek Markus, Opitz Alexander Karl, Fleig Juergen
Institute of Chemical Technologies and Analytics, TU Wien Getreidemarkt 9-E164 1060 Vienna Austria
CEST Kompetenzzentrum für elektrochemische Oberflächentechnologie GmbH TFZ - Wiener Neustadt Viktor-Kaplan-Strasse 2 2700 Wiener Neustadt Austria.
J Mater Chem A Mater. 2021 Dec 3;10(6):2973-2986. doi: 10.1039/d1ta08634k. eCollection 2022 Feb 8.
Accelerating the oxygen reduction kinetics of solid oxide fuel cell (SOFC) cathodes is crucial to improve their efficiency and thus to provide the basis for an economically feasible application of intermediate temperature SOFCs. In this work, minor amounts of Pt were doped into lanthanum strontium ferrite (LSF) thin film electrodes to modulate the material's oxygen exchange performance. Surprisingly, Pt was found to be incorporated on the B-site of the perovskite electrode as non metallic Pt. The polarization resistance of LSF thin film electrodes with and without additional Pt surface doping was compared directly after film growth employing electrochemical impedance spectroscopy inside a PLD chamber (-PLD). This technique enables observation of the polarization resistance of pristine electrodes unaltered by degradation or any external contamination of the electrode surface. Moreover, growth of multi-layers of materials with different compositions on the very same single crystalline electrolyte substrate combined with impedance measurements allow excellent comparability of different materials. Even a 5 nm layer of Pt doped LSF (1.5 at% Pt), a Pt loading of 80 ng cm, improved the polarization resistance by a factor of about 2.5. In addition, (O) and temperature dependent impedance measurements on both pure and Pt doped LSF were performed and obtained similar activation energies and (O) dependence of the polarization resistance, which allow us to make far reaching mechanistic conclusions indicating that Pt introduces additional active sites.
加速固体氧化物燃料电池(SOFC)阴极的氧还原动力学对于提高其效率至关重要,从而为中温SOFC的经济可行应用提供基础。在这项工作中,将少量的Pt掺杂到镧锶铁氧体(LSF)薄膜电极中,以调节材料的氧交换性能。令人惊讶的是,发现Pt以非金属Pt的形式掺入钙钛矿电极的B位。在PLD腔室(-PLD)内采用电化学阻抗谱,在薄膜生长后直接比较了有和没有额外Pt表面掺杂的LSF薄膜电极的极化电阻。该技术能够观察到未因电极表面降解或任何外部污染而改变的原始电极的极化电阻。此外,在同一单晶体电解质基板上生长具有不同组成的多层材料并结合阻抗测量,使得不同材料具有出色的可比性。即使是5nm厚的Pt掺杂LSF(1.5at%Pt)层,Pt负载量为80ng/cm,也能使极化电阻提高约2.5倍。此外,对纯LSF和Pt掺杂LSF进行了(O)和温度相关的阻抗测量,得到了相似的活化能和极化电阻的(O)依赖性,这使我们能够得出深远的机理结论,表明Pt引入了额外的活性位点。