Suppr超能文献

用于人类结肠病变诊断的新型逐像素共配准苏木精-伊红和多光子显微镜图像数据集

Novel Pixelwise Co-Registered Hematoxylin-Eosin and Multiphoton Microscopy Image Dataset for Human Colon Lesion Diagnosis.

作者信息

Picon Artzai, Terradillos Elena, Sánchez-Peralta Luisa F, Mattana Sara, Cicchi Riccardo, Blover Benjamin J, Arbide Nagore, Velasco Jacques, Etzezarraga Mª Carmen, Pavone Francesco S, Garrote Estibaliz, Saratxaga Cristina L

机构信息

TECNALIA, Basque Research and Technology Alliance (BRTA), Astondo bidea, Edificio 700, 48160 Derio (Bizkaia), Spain.

University of the Basque Country UPV/EHU, Ingeniero Torres Quevedo Plaza, 1, 48013 Bilbao, Spain.

出版信息

J Pathol Inform. 2022 Feb 7;13:100012. doi: 10.1016/j.jpi.2022.100012. eCollection 2022.

Abstract

Colorectal cancer presents one of the most elevated incidences of cancer worldwide. Colonoscopy relies on histopathology analysis of hematoxylin-eosin (H&E) images of the removed tissue. Novel techniques such as multi-photon microscopy (MPM) show promising results for performing real-time optical biopsies. However, clinicians are not used to this imaging modality and correlation between MPM and H&E information is not clear. The objective of this paper is to describe and make publicly available an extensive dataset of fully co-registered H&E and MPM images that allows the research community to analyze the relationship between MPM and H&E histopathological images and the effect of the semantic gap that prevents clinicians from correctly diagnosing MPM images. The dataset provides a fully scanned tissue images at 10x optical resolution (0.5 µm/px) from 50 samples of lesions obtained by colonoscopies and colectomies. Diagnostics capabilities of TPF and H&E images were compared. Additionally, TPF tiles were virtually stained into H&E images by means of a deep-learning model. A panel of 5 expert pathologists evaluated the different modalities into three classes (healthy, adenoma/hyperplastic, and adenocarcinoma). Results showed that the performance of the pathologists over MPM images was 65% of the H&E performance while the virtual staining method achieved 90%. MPM imaging can provide appropriate information for diagnosing colorectal cancer without the need for H&E staining. However, the existing semantic gap among modalities needs to be corrected.

摘要

结直肠癌是全球癌症发病率最高的癌症之一。结肠镜检查依赖于对切除组织苏木精-伊红(H&E)图像的组织病理学分析。多光子显微镜(MPM)等新技术在进行实时光学活检方面显示出了有前景的结果。然而,临床医生并不习惯这种成像方式,且MPM与H&E信息之间的相关性尚不清楚。本文的目的是描述并公开一个广泛的完全配准的H&E和MPM图像数据集,使研究界能够分析MPM与H&E组织病理学图像之间的关系,以及阻止临床医生正确诊断MPM图像的语义鸿沟的影响。该数据集提供了来自通过结肠镜检查和结肠切除术获得的50个病变样本的10倍光学分辨率(0.5µm/像素)的全扫描组织图像。比较了TPF和H&E图像的诊断能力。此外,通过深度学习模型将TPF切片虚拟染色为H&E图像。由5名专家病理学家组成的小组将不同模式评估为三个类别(健康、腺瘤/增生和腺癌)。结果表明,病理学家对MPM图像的诊断性能为H&E性能的65%,而虚拟染色方法达到了90%。MPM成像无需H&E染色即可为诊断结直肠癌提供适当信息。然而,现有模式之间的语义鸿沟需要纠正。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52d9/8855324/0cc8d4bb8f51/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验