Suppr超能文献

揭示数据增强变换在息肉分割中的作用。

Unravelling the effect of data augmentation transformations in polyp segmentation.

机构信息

Jesús Usón Minimally Invasive Surgery Centre, Road N-521, km 41.8, 10071, Cáceres, Spain.

Tecnalia Research and Innovation, Zamudio, Spain.

出版信息

Int J Comput Assist Radiol Surg. 2020 Dec;15(12):1975-1988. doi: 10.1007/s11548-020-02262-4. Epub 2020 Sep 28.

Abstract

PURPOSE

Data augmentation is a common technique to overcome the lack of large annotated databases, a usual situation when applying deep learning to medical imaging problems. Nevertheless, there is no consensus on which transformations to apply for a particular field. This work aims at identifying the effect of different transformations on polyp segmentation using deep learning.

METHODS

A set of transformations and ranges have been selected, considering image-based (width and height shift, rotation, shear, zooming, horizontal and vertical flip and elastic deformation), pixel-based (changes in brightness and contrast) and application-based (specular lights and blurry frames) transformations. A model has been trained under the same conditions without data augmentation transformations (baseline) and for each of the transformation and ranges, using CVC-EndoSceneStill and Kvasir-SEG, independently. Statistical analysis is performed to compare the baseline performance against results of each range of each transformation on the same test set for each dataset.

RESULTS

This basic method identifies the most adequate transformations for each dataset. For CVC-EndoSceneStill, changes in brightness and contrast significantly improve the model performance. On the contrary, Kvasir-SEG benefits to a greater extent from the image-based transformations, especially rotation and shear. Augmentation with synthetic specular lights also improves the performance.

CONCLUSION

Despite being infrequently used, pixel-based transformations show a great potential to improve polyp segmentation in CVC-EndoSceneStill. On the other hand, image-based transformations are more suitable for Kvasir-SEG. Problem-based transformations behave similarly in both datasets. Polyp area, brightness and contrast of the dataset have an influence on these differences.

摘要

目的

数据增强是克服大型标注数据库缺乏的常用技术,当将深度学习应用于医学成像问题时,通常会出现这种情况。然而,对于特定领域应该应用哪些变换,尚未达成共识。本研究旨在确定不同变换对使用深度学习进行息肉分割的影响。

方法

考虑基于图像的变换(宽度和高度移位、旋转、剪切、缩放、水平和垂直翻转以及弹性变形)、基于像素的变换(亮度和对比度变化)和基于应用的变换(镜面反射光和模糊帧),选择了一组变换和范围。在没有数据增强变换的情况下(基线),以及对于每种变换和范围,使用 CVC-EndoSceneStill 和 Kvasir-SEG 独立地在相同条件下训练模型。对相同测试集进行统计分析,以比较基线性能与每个数据集的每种变换的每个范围的结果。

结果

这种基本方法确定了每个数据集最合适的变换。对于 CVC-EndoSceneStill,亮度和对比度的变化显著提高了模型性能。相反,Kvasir-SEG 从基于图像的变换中受益更多,尤其是旋转和剪切。使用合成镜面反射光进行增强也可以提高性能。

结论

尽管基于像素的变换很少被使用,但它们在 CVC-EndoSceneStill 中具有改善息肉分割的巨大潜力。另一方面,基于图像的变换更适合 Kvasir-SEG。基于问题的变换在两个数据集上表现相似。数据集的息肉面积、亮度和对比度对这些差异有影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0da/7671995/b09ef8cf1411/11548_2020_2262_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验