Suppr超能文献

关于非授权频段中LTE-LAA的共存:建模与性能分析

On the Coexistence of LTE-LAA in the Unlicensed Band: Modeling and Performance Analysis.

作者信息

Bitar Naim, Kalaa Mohamad Omar Al, Seidman Seth J, Refai Hazem H

机构信息

Department of Electrical and Computer Engineering, The University of Oklahoma, Tulsa, OK 74135, USA.

Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.

出版信息

IEEE Access. 2018 Oct 12;6:52668-52681. doi: 10.1109/access.2018.2870757.

Abstract

Long term evolution (LTE) technology leveraging the unlicensed band is anticipated to provide a solution for the challenges stemming from the rapid growth of mobile wireless services, the scarcity of available licensed spectrum, and the expected significant increase in mobile data traffic. Ensuring fair operation in terms of spectrum sharing with current unlicensed spectrum incumbents is a key concern relative to the success and viability of Unlicensed LTE (U-LTE). This paper addresses the problem of modeling and evaluating the coexistence of LTE license-assisted-access in the unlicensed band. The paper presents a novel analytical model using Markov chain to accurately model the LAA listen-before-talk scheme, as specified in the final technical specification 36.213 of 3GPP release 13 and 14. Furthermore, model validation is demonstrated through numerical and simulation results comparison. Model performance evaluation is examined and contrasted with IEEE 802.11 distributed coordination function. Finally, a comprehensive coexistence performance analysis is conducted for both homogeneous and heterogeneous network scenarios and coexistence results are presented and discussed herein.

摘要

利用非授权频段的长期演进(LTE)技术有望为应对移动无线服务快速增长、可用授权频谱稀缺以及移动数据流量预期大幅增加所带来的挑战提供解决方案。相对于非授权LTE(U-LTE)的成功与可行性而言,确保与当前非授权频谱使用者在频谱共享方面的公平运行是一个关键问题。本文探讨了对非授权频段中LTE授权辅助接入共存进行建模和评估的问题。本文提出了一种新颖的分析模型,该模型使用马尔可夫链来精确模拟3GPP版本13和14的最终技术规范36.213中规定的LAA先听后说方案。此外,通过数值和仿真结果比较来证明模型验证。对模型性能评估进行了研究,并与IEEE 802.11分布式协调功能进行了对比。最后,针对同构和异构网络场景进行了全面的共存性能分析,并在此展示和讨论了共存结果。

相似文献

1
On the Coexistence of LTE-LAA in the Unlicensed Band: Modeling and Performance Analysis.
IEEE Access. 2018 Oct 12;6:52668-52681. doi: 10.1109/access.2018.2870757.
2
Wireless Coexistence Testing in the 5 GHz Band with LTE-LAA Signals.
IEEE Int Symp Electromagn Compat. 2019 Jul;2019:437-442. doi: 10.1109/isemc.2019.8825300. Epub 2019 Sep 5.
3
Towards Harmonious Coexistence in the Unlicensed Spectrum: Rational Cooperation of Operators.
Sensors (Basel). 2017 Oct 24;17(10):2432. doi: 10.3390/s17102432.
4
5G NR-U: Homogeneous Coexistence Analysis.
IEEE Glob Commun Conf. 2020 Dec;2020. doi: 10.1109/globecom42002.2020.9322216. Epub 2021 Jan 25.
7
Q-Learning Based Fair and Efficient Coexistence of LTE in Unlicensed Band.
Sensors (Basel). 2019 Jun 28;19(13):2875. doi: 10.3390/s19132875.
9
Multi-Cell LTE-U/Wi-Fi Coexistence Evaluation Using a Reinforcement Learning Framework.
Sensors (Basel). 2020 Mar 27;20(7):1855. doi: 10.3390/s20071855.
10
A Multiarmed Bandit Approach for LTE-U/Wi-Fi Coexistence in a Multicell Scenario.
Sensors (Basel). 2023 Jul 27;23(15):6718. doi: 10.3390/s23156718.

引用本文的文献

1
5G NR-U: Homogeneous Coexistence Analysis.
IEEE Glob Commun Conf. 2020 Dec;2020. doi: 10.1109/globecom42002.2020.9322216. Epub 2021 Jan 25.
2
Wireless Coexistence Testing in the 5 GHz Band with LTE-LAA Signals.
IEEE Int Symp Electromagn Compat. 2019 Jul;2019:437-442. doi: 10.1109/isemc.2019.8825300. Epub 2019 Sep 5.
3
Service Level Agreements for 5G and Beyond: Overview, Challenges and Enablers of 5G-Healthcare Systems.
IEEE Access. 2021 Jan 5;9:1044-1061. doi: 10.1109/access.2020.3046927.
4
5 GHz Band LTE-LAA Signal Selection for Use as the Unintended Signal in ANSI C63.27 Wireless Coexistence Testing.
IEEE Trans Electromagn Compat. 2020 Aug 1;62(4):1468-1476. doi: 10.1109/temc.2020.2983326.
6
Q-Learning Based Fair and Efficient Coexistence of LTE in Unlicensed Band.
Sensors (Basel). 2019 Jun 28;19(13):2875. doi: 10.3390/s19132875.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验