Suppr超能文献

基于强化学习框架的多小区 LTE-U/Wi-Fi 共存评估。

Multi-Cell LTE-U/Wi-Fi Coexistence Evaluation Using a Reinforcement Learning Framework.

机构信息

Federal University of Rio Grande do Norte, Natal-RN 59078-970, Brazil.

出版信息

Sensors (Basel). 2020 Mar 27;20(7):1855. doi: 10.3390/s20071855.

Abstract

Cellular broadband Internet of Things (IoT) applications are expected to keep growing year-by-year, generating demands from high throughput services. Since some of these applications are deployed over licensed mobile networks, as long term evolution (LTE), one already common problem is faced: the scarcity of licensed spectrum to cope with the increasing demand for data rate. The LTE-Unlicensed (LTE-U) forum, aiming to tackle this problem, proposed LTE-U to operate in the 5 GHz unlicensed spectrum. However, Wi-Fi is already the consolidated technology operating in this portion of the spectrum, besides the fact that new technologies for unlicensed band need mechanisms to promote fair coexistence with the legacy ones. In this work, we extend the literature by analyzing a multi-cell LTE-U/Wi-Fi coexistence scenario, with a high interference profile and data rates targeting a cellular broadband IoT deployment. Then, we propose a centralized, coordinated reinforcement learning framework to improve LTE-U/Wi-Fi aggregate data rates. The added value of the proposed solution is assessed by a ns-3 simulator, showing improvements not only in the overall system data rate but also in average user data rate, even with the high interference of a multi-cell environment.

摘要

蜂窝宽带物联网 (IoT) 应用预计将逐年增长,对高速率服务的需求也在不断增加。由于其中一些应用部署在许可移动网络上,如长期演进 (LTE),因此已经面临一个常见问题:可用频谱的稀缺性难以满足数据速率不断增长的需求。旨在解决这一问题的 LTE 非授权 (LTE-U) 论坛提出了在 5GHz 非授权频谱中运行的 LTE-U。然而,Wi-Fi 已经是在该频谱部分运行的成熟技术,此外,对于非授权频段的新技术需要有机制来促进与传统技术的公平共存。在这项工作中,我们通过分析具有高干扰配置文件和针对蜂窝宽带 IoT 部署的目标数据速率的多小区 LTE-U/Wi-Fi 共存场景,扩展了文献。然后,我们提出了一个集中式、协调的强化学习框架来提高 LTE-U/Wi-Fi 的聚合数据速率。所提出解决方案的附加值通过 ns-3 模拟器进行评估,结果表明不仅在整个系统的数据速率方面,而且在平均用户数据速率方面都有改进,即使在多小区环境的高干扰情况下也是如此。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4483/7181158/6cff81d685d8/sensors-20-01855-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验