Das Jyotirekha, Mahammad Fayaz Shaik, Krishnamurthy Rajanikant Golgodu
School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala 673601 India.
Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India.
3 Biotech. 2022 Mar;12(3):71. doi: 10.1007/s13205-022-03130-5. Epub 2022 Feb 15.
The increasing prevalence of ischemic stroke combined with limited therapeutic options highlights the compelling need for continued research into the development of future neuro-therapeutics. Death-Associated Protein Kinase 1 (DAPK1) and p53 protein-protein interaction serve as a signaling point for the convergence of apoptosis and necrosis in cerebral ischemia. In this study, we used an integrated chemo-informatics and in vitro experimental drug repurposing strategy to screen potential small-molecule inhibitors of DAPK1-p53 interaction from the United States of America Food and Drug Administration (FDA) approved drug database exhibiting post-ischemic neuroprotective and neuro-regenerative efficacy and mechanisms. The computational docking and molecular dynamics simulation of FDA-approved drugs followed by an in vitro experimental validation identified acarbose, an anti-diabetic medication and caloric restriction mimetic as a potential inhibitor of DAPK1-p53 interaction. The evaluation of post-ischemic neuroprotective and regenerative efficacy and mechanisms of action for acarbose was carried out using a set of experimental methods, including cell viability, proliferation and differentiation assays, fluorescence staining, and gene expression analysis. Post-ischemic administration of acarbose conferred significant neuroprotection against ischemia-reperfusion injury in vitro. The reduced fluorescence emission in cells stained with S supported the potential of acarbose in inhibiting the DAPK1-p53 interaction. Acarbose prevented mitochondrial and lysosomal dysfunction, and favorably modulated gene expression related to cell survival, inflammation, and regeneration. BrdU staining and neurite outgrowth assay showed a significant increase in cell proliferation and differentiation in acarbose-treated group. This is the first study known to provide mechanistic insight into the post-ischemic neuroprotective and neuro-regenerative potential of acarbose. Our results provide a strong basis for preclinical studies to evaluate the safety and neuroprotective efficacy of acarbose against ischemic stroke.
The online version contains supplementary material available at 10.1007/s13205-022-03130-5.
缺血性中风患病率的不断上升以及治疗选择的有限性凸显了持续开展未来神经治疗药物研发研究的迫切需求。死亡相关蛋白激酶1(DAPK1)与p53的蛋白质-蛋白质相互作用是脑缺血中细胞凋亡和坏死汇聚的信号点。在本研究中,我们采用了整合化学信息学和体外实验药物重新利用策略,从美国食品药品监督管理局(FDA)批准的药物数据库中筛选DAPK1-p53相互作用的潜在小分子抑制剂,这些抑制剂具有缺血后神经保护和神经再生功效及机制。对FDA批准药物进行计算对接和分子动力学模拟,随后进行体外实验验证,确定阿卡波糖(一种抗糖尿病药物和热量限制模拟物)为DAPK1-p53相互作用的潜在抑制剂。使用一组实验方法,包括细胞活力、增殖和分化测定、荧光染色及基因表达分析,对阿卡波糖缺血后神经保护和再生功效及作用机制进行了评估。缺血后给予阿卡波糖在体外对缺血再灌注损伤具有显著的神经保护作用。用S染色的细胞中荧光发射减少支持了阿卡波糖抑制DAPK1-p53相互作用的潜力。阿卡波糖可预防线粒体和溶酶体功能障碍,并有利地调节与细胞存活、炎症和再生相关的基因表达。BrdU染色和神经突生长测定表明,阿卡波糖治疗组细胞增殖和分化显著增加。这是已知的第一项提供关于阿卡波糖缺血后神经保护和神经再生潜力机制见解的研究。我们的结果为临床前研究评估阿卡波糖对缺血性中风的安全性和神经保护功效提供了有力依据。
在线版本包含可在10.1007/s13205-022-03130-5获取的补充材料。